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Chapter 1

An Introduction to the Errors in
Variables Model

Consider two variables, ξ and η which are linearly related in the form

ηi = α + βξi, i = 1, . . . , n

However, instead of observing ξ and η, we observe

xi = ξi + δi

yi = ηi + εi = α + βξi + εi

where δ and ε are considered to be random error components, or noise.

It is assumed that E[δi] = E[εi] = 0 and that V ar[δi] = σ2
δ , V ar[εi] = σ2

ε for all i. Also

the errors δ and ε are mutually uncorrelated. Thus

Cov[δi, δj] = Cov[εi, εj] = 0, i 6= j

Cov[δi, εj] = 0,∀ i, j

It is possible to rewrite the model outlined above as

yi = α + βxi + (εi − βδi), i = 1, . . . , n

This highlights the difference between this problem and the standard regression model.

The error term is clearly dependent on β. In addition to this term ε− βδ is correlated

with x. Indeed,

Cov[x, ε− βδ] = E[x(ε− βδ)] = E[(ξ + δ)(ε− βδ)] = −βσ2
δ
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and is only zero if β = 0 or σ2
δ = 0. If σ2

δ = 0, the model is equivalent to standard y

on x regression, and the usual results apply.

There have been several reviews of errors in variables methods, notably Casella and

Berger [11], Cheng and Van Ness [14], Fuller [27], Kendall and Stuart [47] and Sprent

[66]. Unfortunately the notation has not been standardised. This report closely fol-

lows the notation set out by Cheng and Van Ness [14] but for convenience, it has been

necessary to modify parts of their notation. All notation will be carefully introduced

at the appropriate time.

Errors in variables modelling can be split into two general classifications defined by

Kendall [45], [46], as the functional and structural models. The fundamental difference

between these models lies in the treatment of the ξ′is

The functional model This assumes the ξ′is to be unknown, but fixed constants µi.

The structural model This model assumes the ξ′is to be a random sample from a

random variable with mean µ and variance σ2.
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Chapter 2

An Overview of Errors in Variables
Modelling

2.1 Origins and Beginnings

The author first associated with the errors in variables problem was Adcock [1], [2].

In the late 1800’s he considered how to make the sum of the squares of the errors at

right angles to the line as small as possible. This enabled him to find what he felt

to be the most probable position of the line. Using ideas from basic geometry, he

showed that the errors in variables line must pass through the centroid of the data.

However, Adcock’s results were somewhat restrictive in that he only considered equal

error variances. These ideas are linked to what is commonly referred to as orthogonal

regression. Orthogonal regression minimises the orthogonal distances (as opposed to

vertical or horizontal distances in standard linear regression) from the data points onto

the regression line.

Adcock’s work was extended a year later by Kummel [48]. Instead of taking equal error

variances, he assumed that the ratio λ = σ2
ε

σ2
δ

was known instead. Kummel derived an

estimate of the line which clearly showed the relation between his and Adcock’s work.

Kummel argued that his assumption of knowing λ was not unreasonable. He suggested

that most experienced practitioners have sufficient knowledge of the error structure to

agree a value for this ratio. Use of the orthogonal regression line has been questioned

by some authors, notably Bland [8], on the grounds that if the scale of measurement
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of the line is changed, then a different line would be fitted. However, this is only going

to be true if λ is not modified along with the scale of measurement. If λ is modified

along with the scale of measurement, the same line is fitted.

The idea of orthogonal regression was included in a book by Deming [20]. He noted

that just as the orthogonal projections from the data to the regression line may be

taken, so can any other projection. This would then take account of unequal error

variances. Figure 1.1 illustrates how this may be done. Here, the angle θ is taken

such that tan(θ) = V ar[x]
V ar[y]

. The least squares method can then be used to minimise

this residual error. This assumes that the error structure is homoscedastic, otherwise

this method cannot be used. Lindley [49] found that adding a weighting factor when

minimising the sum of squares of the orthogonal projections, allowed one to minimise

projections other than orthogonal.

Figure 2.1: Deming’s Regression

Another early paper on this subject was by Pearson [60]. He extended the ideas of

previous authors to allow the fitting of lines and hyperplanes (when there is more than

one predictor) of best fit. Pearson was able to show that the orthogonal regression line
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lies between the y on x, and x on y regression lines.

2.2 Grouping Methods

A different approach was suggested by Wald [73]. Wald described a method that

did not make an assumption regarding the error structure. He stressed that there

was no justification in making assumptions such as λ = 1, and that the regression

line would not be invariant under transformations of the coordinate system (this

criticism has been dealt with in the previous section) . Wald suggested splitting

the observations into two groups, G1 and G2, where G1 contains the first half of

the ordered observations (x(1), y(1)), . . . , (x(m), y(m)) and G2 contains the second half

(x(m+1), y(m+1)), . . . , (x(n), y(n)). An estimate of the slope is then

β̃W =
(y(1) + . . .+ y(m))− (y(m+1) + . . .+ y(n))

(x(1) + . . .+ x(m))− (x(m+1) + . . .+ x(n))

A problem here is that the grouping must be based on the order of the true values,

otherwise, in general, the groups are not independent of the error terms δ1, . . . , δn.

Wald countered this by proving that, at least approximately, grouping with respect to

the observed values is the same as grouping with respect to the true values. Properties

of this estimator for finite samples, as well as approximations of the first four moments

can be found in Gupta and Amanullah [39].

The idea of grouping the observations was further developed by Bartlett [6]. In-

stead of separating the ordered observed values into two groups, he suggested that

greater efficiency would be obtained by separating the ordered observations into three

groups, G1, G2 and G3. G1 and G3 are the outer groups, and G2 is the middle group.

Nair and Banerjee [54] show that for a functional model, Bartlett’s grouping method

provided them with a more efficient estimator of the slope than Wald’s method. In

Bartlett’s method the slope is found by drawing a line through the points ( ¯xG1 , ¯yG1)

and ( ¯xG3 , ¯yG3), where ( ¯xG1 , ¯yG1) and ( ¯xG3 , ¯yG3) are the mean points of the observations

in G1 and G3 respectively. In effect, the observations in G2 are not used after the data
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are grouped. Gibson and Jowett [32] offered advice on how to place the data into these

three groups to obtain the most efficient estimate of the slope. How the data should

be grouped depended on the distribution of ξ. A table summarising their results for a

variety of distributions of ξ can be found in the review paper by Madansky [50].

Neyman and Scott [56] suggested another grouping method. The methodology they

used is as follows. They suggested fixing two numbers, a and b such that a 6 b. The

numbers a and b must be selected so P [x 6 a] > 0 and P [x > b] > 0. The observations

xi are then divided into three groups, G1, G2 and G3. If xi 6 a those observations

are put into G1, if a < xi 6 b those observations are put into G2, and if xi > b those

observations are put into G3. A further two numbers −c and d are then found such

that P [−c 6 δ 6 d] = 1. An estimator of the slope is then given by

β̃NS =
¯yG3 − ¯yG1

¯xG3 − ¯xG1

and is a consistent estimator of β if

P [a− c < ξ 6 a+ d] = P [b− c < ξ 6 b+ d] = 0.

However, whether this condition is one that is obtainable in practise is open to debate.

Grouping methods, in particular Wald’s method, have been critised by Pakes [57]. He

claimed that the work of Gupta and Amanullah [39] is unnecessary as Wald’s estimate

is, strictly speaking, inconsistent. Letting β̃W denote Wald’s estimate for the slope,

Pakes showed

|p lim β̃W | = |β|
∣∣∣ ( ¯xG2 − ¯xG1)

( ¯xG2 − ¯xG1) + E[δ|x ∈ G2]− E[δ|x ∈ G1]

∣∣∣ < |β|,

which shows that, in general, Wald’s estimate will underestimate the value of the true

slope.

However, this expression derived by Pakes offers a similar conclusion to that of Neyman

and Scott [55]. As long as the horizontal error δ is bounded (or not too significant) so
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that the ranks of ξ are at least approximately equal to the ranks of x, then grouping

methods should provide a respectable estimator for the slope as the expression

E[δ|x ∈ G2]− E[δ|x ∈ G1] should be negligible.

2.3 Instrumental Variables

Extensive consideration of this method has appeared in the econometrics literature.

Essentially, the instrumental variables procedure involves finding a variable w that

is correlated with x, but is uncorrelated with the random error component, δ. The

estimate for the slope is then

β̃IV =
syw
sxw

,

where, syw and sxw are the second order sample moments defined as

sab =
n∑
i=1

(ai − ā)(bi − b̄),

and ā = n−1
∑n

i=1 ai is the sample mean. In practice however, it is difficult to obtain

a good instrumental variable which meets the aforementioned criteria.

The method of grouping can be put into the context of instrumental variables. Mad-

dala [51] showed that Wald’s grouping method is equivalent to using the instrumental

variable

wi =

{
1 if xi > median(x1, . . . , xn)

−1 if xi < median(x1, . . . , xn)

and similarly Bartlett’s grouping method is equivalent to using

wi =





1 for the largest n
3

observations

−1 for the smallest n
3

observations

0 otherwise

An idea using the ranks of the xi was proposed by Durbin [26]. He suggested an

estimator of the form

β̃D =

∑n
i=1 i y(i)∑n
i=1 i x(i)

where (x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n)) are the ordered observations. However, as

with grouping methods, it is unlikely that the ranks of the observed data will match
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the ranks of the true data. So, as in Wald’s method, this estimate is inconsistent.

2.4 Geometric Mean

Other than grouping the data, or looking for an instrumental variable, another ap-

proach is to simply take the geometric mean of the y on x regression line, and the

reciprocal of the x on y regression line. This leads to the estimate

β̃GM = sign(sxy)

√
syy
sxx

.

There is a geometric interpretation of the line having this slope - it is the line giving the

minimum sum of products of the horizonal and vertical distances of the observations

from the line (Teissier [69]). However, for the estimate to be unbiased (see Jolicoeur

[42] for example), one must assume that

λ = β2 =
σ2
ε

σ2
δ

. (2.1)

This is due to

β̃GM −→
√
β2σ2 + σ2

ε

σ2 + σ2
δ

6= β

A technical criticism of the use of this estimator is that it may have infinite variance

(Creasy [18]). This happens when the scatter of the observations is so great that it

is difficult to determine if one line or another perpendicular to it should be used to

represent the data. As a result, it may be difficult to construct confidence intervals of a

respectable finite width. Geometric mean regression has received much attention, pri-

marily in the fisheries literature. Ricker [61] examined a variety of regression methods

applied to fish biology, and promoted the use of geometric mean regression. He claimed

that in most situations it is superior to grouping methods, and the geometric mean

regression line is certainly one of the easiest to fit. In addition, Ricker also warned

that regression theory based on assuming that the data are from a normal distribution

may not apply to non-normally distributed data. Great care must be taken by the

statistician to ensure the proper conclusions are obtained from the data.
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Jolicoeur [42], again in the fisheries literature, discussed the paper by Ricker. He stated

that as geometric mean regression is equivalent to the assumption in equation (2.1) it

is difficult to interpret the meaning of the slope, as the error variances σ2
δ and σ2

ε only

contaminate and cannot explain the underlying relationship between ξ and η. Ricker

replied to the paper by Jolicoeur in a letter, and claimed that the ratio (2.1) may

not be linked to the presence or the strength of the underlying relationship, but the

correlation coefficient will always give an idea as to the strength. Ricker reiterated

that geometric mean regression is an intuitive approach, and as long as the assumption

(2.1) holds, is a perfectly valid regression tool.

Further discussion on this estimate was initiated by Sprent and Dolby [68]. They dis-

couraged the use of geometric mean regression, due to the unrealistic assumption of

(2.1). They both however sympathised with practitioners, especially those in fish biol-

ogy, who do not have any knowledge regarding λ. In addition, they commented that the

correlation coefficient might be misleading in an errors in variables model, due to each

of the observations containing error. They did however suggest that a correlation coef-

ficient may be useful in determining if a transformation to linearity has been successful.

An alternative way of looking at geometric mean regression was provided by Barker

et al [4]. Instead of looking at it as a geometrical average, it can be derived in its

own right by adopting a so-called least triangles approach. This is where the sum of

the areas of the right-angled triangles formed from the horizontal discrepancies from

the data point to the regression line, the vertical discrepancies from the data point

to the regression line, and the regression line itself, are minimised. They also showed

a connection between geometric mean regression and the correlation coefficient, thus

refuting the claim by Sprent and Dolby [68] that the correlation coefficient has little

value in errors in variables modelling.
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2.5 Cumulants

Another method of estimation that has been used in errors in variables modelling is the

method of moments. A closely related approach to this is using cumulants, which were

proposed by Geary [28], [29], [31], [30]. Cumulants can be defined as follows. Assume

that X and Y are jointly distributed random variables. Then, provided the expansions

are valid in the given domain, the natural logarithm of the joint characteristic function

can be written as

ψ(t1, t2) = ln[φ(t1, t2)] = ln[E(eit1X+it2Y )] =
∞∑

r,s=0

κ(r, s)
(it1)r

r!

(it2)s

s!
(2.2)

Here, ψ is the so-called joint cumulant generating function, and, if r 6= 0 and s 6= 0

then κ(r, s) is called the r,s product cumulant of X and Y. The slope can be estimated

via the method of cumulants as follows.

Assume that a structural errors in variables model has been selected. Then

xi = ξi + δi

yi = ηi + εi

ηi = α + βξi

where the error laws quoted earlier in this report apply (see equations (1.1)). If the

true values ξ and η are centered with respect to their true mean, then the intercept

vanishes, and we can write the structural relationship in the form

βξ − η = 0 (2.3)

Letting κ(x,y) denote the cumulants of (x, y), and κ(ξ,η) denote the cumulants of (ξ, η)

we have

κ(x,y)(r, s) = κ(ξ,η)(r, s)

This follows from the following important properties of bivariate cumulants (see, for

example Cheng and Van Ness [14], Pal [58])
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• The cumulant of a sum of independent random variables is the sum of the cumu-

lants.

• The bivariate cumulant of independent random variables is zero.

The joint characteristic function of (ξ, η) is

φ(t1, t2) = E[eit1ξ+it2η] (2.4)

It follows from (2.3) and (2.4) that

β
∂φ

∂it1
− ∂φ

∂it2
= E[(βξ − η)eit1ξ+it2η] = 0

and if we replace the joint characteristic function φ by the cumulant generating function

ψ we obtain

β
∂ψ

∂it1
− ∂ψ

∂it2
=

1

φ

(
β
∂φ

∂it1
− ∂φ

∂it2

)
= 0 (2.5)

and it follows from (2.2) and (2.5), for all r, s > 0

βκ(r + 1, s)− κ(r, s+ 1) = 0

If κ(r + 1, s) 6= 0 an estimate for the slope is then

β̃C =
κ(r, s+ 1)

κ(r + 1, s)

In reality, the cumulants κ(r, s) will have to be replaced by their sample equivalents

K(r, s). Details of how these sample cumulants may be computed as functions of sam-

ple moments are included in Geary [28].

2.6 Method of Moments

Instead of tackling the problem via cumulants, the method of moments can be used.

Briefly, this is where a set of estimating equations are derived by equating population

moments with their sample equivalents. The method of moments approach is con-

sidered in detail by Gillard and Iles [33], and so only a brief survey of the existing
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literature is given here. Kendall and Stuart [47] derived the five first and second order

moment equations for the structural errors in variables model. However, there are six

parameters, µ, α, β, σ2
x, σ

2
δ and σ2

ε for the structural model. So in order to proceed with

the method of moments, some information regarding a parameter must be assumed

known, or more estimating equations must be derived by going to the higher moments.

Details on the various assumptions that can be made are included in Cheng and Van

Ness [14], Dunn [25], and Kendall and Stuart [47], as well as others. Dunn [25] gave

formulas for many of the estimators of the slope that are included in Gillard and Iles

[33]. However, he did not give any information regarding estimators based on higher

moments. Neither did he give information about the variances of these estimates. Work

on the higher order moment estimating equations has been done by Drion [24], and

more recently by Pal [58], Van Montfort et al [72], Van Montfort [71] and Cragg [17].

Drion [24], in a paper that is infrequently cited, looked at an estimate that could be

derived through the third order non central moment equations for a functional model.

Drion computed the variances of all the sample moments that he used, and showed

that his estimate of the slope is consistent. Prior to this work, Scott [63] considered

the structural model, and also found an estimate based on the third moments. Scott

was able to show that if the third central moment of ξ exists, and is non-zero, then the

equation

Fn,1(b) =
1

n

n∑
i=1

[yi − ȳ − b(xi − x̄)]3 = 0 (2.6)

has a root b̂ which is a consistent estimate of β. This is because the stochastic limit of

Fn,1(b) is (β − b)3µξ3, where µξ3 denotes the third central moment of ξ. The estimate

of the slope is then a function of the third order sample moments. Scott was able

to generalise this result. If the random variable ξ has central moments up to and

including order 2m + 1 and if at least one of the first m odd central moments µξ,2k+1

(k = 1, 2, . . . ,m), differs from zero, then the equation

Fn,m(b) =
1

n

n∑
i=1

[yi − ȳ − b(xi − x̄)]2m+1 = 0 (2.7)

has a root b̂ which is a consistent estimate of β. Scott did warn however, that estimates

based on the lower order moments are likely to be more precise than those based on
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higher order moments. Unfortunately, Scott did not provide a method of extracting

the root which will provide the consistent estimate.

More recently, Pal [58] further examined the possibilities of the moment equations in a

structural model. He stated that in economics, the errors in variables situation cannot

be ignored, and as a result, least squares estimation is the wrong way to proceed. Pal

derived six possible estimators of the slope, but showed that three of these are func-

tions of the other slope estimates, and concluded that there must be infinitely many

consistent estimates which can be obtained by taking different functions of the slope es-

timates he derived. For each of the six estimates, Pal found their asymptotic variances

when the error terms were assumed to follow a normal distribution. He then went on

to consider a variety of regression scenarios, such as
σ2
δ

σ2 = 0, to offer advice as to which

estimator has the smallest variance. The asymptotic efficiency of a particular estimate

with respect to the least squares estimate was also provided, for different distributions

of ξ. A brief review on the method of cumulants, and how errors in variables modelling

might be extended to a multiple linear regression model was included towards the end

of the paper.

Van Montfort et al [72] gave a detailed survey on estimators based on third order mo-

ments. They provided an optimal estimate of the slope which is a function of three

slope estimates. In order to obtain this optimal estimate, the variance covariance if not

known, has to be estimated. By replacing the variance covariance matrix with its esti-

mate, the optimal estimator is no longer a function of moments up to order three since

moments of order lower than three appear in the estimation of the variance covariance

matrix. Van Montfort et al, through a simulation study, demonstrated that the opti-

mal estimate behaves well for a sample size of 50, and is superior to any other third

moment estimator. The same study was replicated for a sample size of 25. For this

sample size, they stated that the third moment estimates performed badly. A standard

assumption is to assume that the errors δ and ε are independent. Van Montfort et al

showed that even if δ and ε are linearly related, then their optimal estimator of the
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slope is still optimal for all consistent estimators of β which are functions of the first,

second and third order moments. In addition, the asymptotic properties of the slope

estimate are not altered.

A detailed account of alternative approaches to errors in variables modelling was writ-

ten by Van Montfort [71]. This text included estimation based on third order moments,

extensions to polynomial regressions, using characteristic functions and links to the fac-

tor analysis model. More details on the asymptotic variances and covariances of the

third order moment slope estimates were provided. This text is an extension of the

details included in the paper by Van Montfort et al [72].

The most recent account on using higher moments was that by Cragg [17]. He extended

the work on the moment equations to include those of the fourth order. A problem

with moment based estimators however, is stability. It is well known that as the order

of the moment increases they become progressively more difficult to estimate and larger

sample sizes will be needed to obtain a reliable estimate. Cragg applied a minimum

χ2 approach to the second, third and fourth moments in order to obtain an efficient

general moment estimator. This approach again involves finding an estimated variance

covariance matrix. As Cragg noted, this may be difficult as it will involve the eighth

order moments. He suggested avoiding this problem by replacing the variance covari-

ance matrix with some weighting matrix. This will result in less asymptotic efficiency

however. In his simulations Cragg used a diagonal weighting matrix with elements

1
2
, 1

15
and 1

96
depending whether the moment equations are based on the second, third

or fourth moments respectively. This may be deemed inappropriate as these values

correspond to the theoretical variances of the second, third and fourth powers of a

normally distributed variable with zero mean and unit variance, even though a normal

distribution will not be applicable for every structural model.

A somewhat different use of the method of moments was suggested by Dagenais and

Dagenais [19]. They proposed a consistent instrumental variable estimator for the
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errors in variables model based on higher moments. In addition, they showed how

a regression model may be tested to detect the presence of errors in both variables.

Dagenais and Dagenais illustrated their ideas through a number of numerical simula-

tions and showed that their estimator is superior to the ordinary least squares estimate.

2.7 Equation Error

Some authors have stressed the importance of a concept known as equation error.

Further details are given by Fuller [27] and Carroll and Ruppert [9]. Equation error

introduces an extra term ωi to each yi

yi = ηi + ωi + εi = α + βξi + ωi + εi

Dunn [25] described the additional error term ωi as

“(a) new random component (that) is not necessarily a measurement error

but is part of y that is not related to the construct or characteristic being

measured.”

Despite its name, equation error is not intended to model a mistake in the choice of

equation used in describing the underlying relationship between ξ and η. Assuming

that the equation error terms have a variance σ2
ω that does not change with the suffix

i, and that they are uncorrelated with the other random variables in the model, the

practical effect of the inclusion of the extra term is to increase the apparent variance

of y by the addition of σ2
ω.

2.8 Maximum Likelihood

The vast majority of the papers available on errors in variables modelling have adopted

a maximum likelihood approach to estimate the parameters. Only a selection of the

large number of papers shall be mentioned here. These papers assumed that the pairs

of observations (xi, yi) are jointly normally and identically distributed. Lindley [49]
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was one of the first authors to use maximum likelihood estimation for the errors in

variables model. Lindley commented that the likelihood equations are not consistent,

unless there is some prior information available on the parameters. He suggested that

the most convenient assumption to make is to assume that the ratio λ is known. Esti-

mates of all the relevant parameters are then derived and discussed.

Kendall and Stuart [47] reviewed the topic of estimation in an errors in variables model,

but concentrated their efforts on the maximum likelihood principle. They commented

that the sample means, variances and covariances form sufficient statistics for a bivari-

ate normal distribution. As a result, the solutions of the method of moment estimating

equations for the unknown parameters µ, α, β, σ2
x, σ

2
δ are also maximum likelihood solu-

tions, provided that these solutions give admissible estimates (namely, positive estima-

tors for the variances in the model). The conditions to obtain admissible estimates are

then outlined. Further details on these conditions, and estimating using the method

of moment estimating equations is included in Gillard and Iles [33]. More detail was

given on the problem of having five moment estimating equations, and six parameters

to estimate. They suggested various ‘cases’, each which consist of a different assump-

tion regarding a subset of the parameters. Estimates for the parameters are derived

for each of these ‘cases’, and advice is given on how to construct confidence intervals.

A brief survey on cumulants, instrumental variables and grouping methods was also

included in their work.

A disadvantage of the likelihood method in the errors in variables problem is that it

is only tractable if all the distributions describing variation in the data are assumed

to be normal. In this case a unique solution is only possible if additional assump-

tions are made concerning the parameters of the model, usually assumptions about

the error variances. Nevertheless, maximum likelihood estimators have certain optimal

properties and it is possible to work out the asymptotic variance covariance matrix of

the estimators. These were given for a range of assumptions by Hood et al [40]. In

addition, Hood et al conducted a simulation study in order to determine a threshold
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sample size to successfully estimate their variance covariance matrix. They concluded

that this threshold was approximately 50.

Other papers on the likelihood approach have tended to focus on a particular aspect

of the problem. For example, Wong [74] considered the likelihood equations when the

error variances were assumed to be known, and equal. This case has attracted much

attention, as if both error variances are known, the problem is overidentified - there

are four parameters to be estimated from five estimating equations (be it likelihood

equations, or moment equations). To simplify the procedure, Wong used an orthogonal

parameterisation in which the slope parameter is orthogonal to the remaining para-

meters. Approximate confidence intervals for the parameters, information on testing

hypotheses about regarding the slope, and the density function for the slope are also

included. Prior to this, Barnett [5] also commented on the inherent difficulties in using

the maximum likelihood technique.

Again for the structural model, Birch [7] showed that the maximum likelihood estimate

for the slope is the same when both error variances are known, and when the ratio of

the error variances. λ is known. He also commented that the maximum likelihood esti-

mates provided by Madansky [50] are inconsistent, and as a result need to be modified.

Some discussion on the admissability conditions was also included.

A key author in this area was Barnett [5]. His paper on the fitting of a functional model

with replications commented on the importance of errors in variables modelling in the

medical and biological areas. The paper adopted the maximum likelihood technique for

estimating the parameters, but no closed form solution could be found. He mentioned

that the maximum likelihood method tends to run into computational problems due

to the awkward nature of the likelihood equations. Barnett also considered alternative

error structures which might be applicable to biological and medical areas.

Most papers concern themselves with homoscedastic errors. Chan and Mak [12] looked
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at heteroscedastic errors in a linear functional relationship. To find the estimates for

the parameters in the model they employed a numerical method to solve a set of non-

linear equations iteratively. The asymptotic behaviour of the estimates are considered

and an approximate asymptotic variance covariance matrix was found. A procedure

for consistently estimating this variance covariance matrix was outlined.

Solari [65] found that the maximum likelihood solution for the linear functional model

discussed by many authors was actually a saddle point, and not a maximum. She said

that although the point was purely academic, it was still one worth making. A detailed

analysis of the form of the likelihood surface was given, and and she concluded that

a maximum likelihood solution for the linear functional model does not exist, unless

one has some prior distribution to place on a parameter. Solari commented that this

problem might appear in other estimation problems. Detailed consideration must be

given to see if the maximum likelihood solution is indeed a maximum. Sprent [67]

considered Solari’s work and further noted the practical implications of her findings.

Copas [15] extended the work of Solari [65]. He showed that when ‘rounding-off’ errors

for the observations are considered, then the likelihood surface becomes bounded. This

allows for a different consideration of the likelihood surface. An estimate for the model

can be found, which is approximately maximum likelihood. In other words, a point

close to the global supremum was used instead. Copas’ solution for the slope is equiv-

alent to using either the x on y estimate or the y on x estimate. The y on x regression

estimate is used if the line corresponding to the geometric mean estimate lies within

45o of the x-axis. The x on y estimate is used if the geometric mean estimate lies

within 45o of the y-axis. A numerical example was provided to illustrate his suggested

methodology, and the likelihood surface for this example was drawn.

Essentially, Copas introduced a modified likelihood function

L =
∏
i

Pi(xi)Qi(yi) (2.8)
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where Pi(x) = P
(
x− h

2
≤ ξi < x+ h

2

)
and Qi(x) = P

(
y − h

2
≤ βξi < y + h

2

)
(note

that Copas’ model did not include an intercept). The value h was introduced to allow

a discrepancy when (ξi, βξi) were recorded or measured. The saddle point noted by

Solari; according to Copas, is a direct consequence of the likelihood function having

singularities at all points within the sets

A = {β, σδ, σε, ξ :
∑

(xi − ξi)2 = 0, σδ = 0}

and

B = {β, σδ, σε, ξ :
∑

(yi − βξi)2 = 0, σε = 0}

Copas showed that within these sets A and B his modified likelihood function reduces

to the likelihood function for y on x regression and x on y regression respectively. This

however is to be expected as set A essentially assumes that there is no horizontal error

(δ) present and set B essentially assumes that there is no vertical error (ε) present. In

addition, Copas’ analyses assume that h is small, which will also imply that the simple

linear regression techniques such as y on x and x on y regression are appropriate.

In summary, Copas’ method is equivalent to using y on x regression if it appears that ξi

is close to xi, and x on y regression if βξi is close to yi. The choice of which regression

to use depends on the location of the geometric mean regression line. Copas admitted

that the y on x and x on y regression estimators do not maximise his likelihood function

L. So, as it is well known that y on x and x on y regression are biased, and can only

offer a crude approximation to the true line, the method proposed by Copas must be

questioned.

An interesting modification of the structural model is the ultrastructural model. Cheng

and Van Ness [13] considered this model with no replication. They showed that if one

of the error variances are known, the maximum likelihood estimates are not consistent,

whilst the method of moments estimates are. Much work on this model was carried out

by Dolby [22]. He wrote on the linear functional and structural models, constructing a

model which he called a synthesis of the functional and structural relations. Dolby [21]
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also discussed the linear structural model, giving an alternative derivation of Birch’s [7]

maximum likelihood solution. Yet another paper which adopts a maximum likelihood

approach was that by Cox [16]. He wrote about the linear structural model for several

groups of data, in other words, the ultrastructural model. He also provided a method

to test various hypotheses regarding the model, and offered an example using head

length and breadth measurements.

2.9 Confidence Intervals

Creasy [18] constructed confidence intervals for Lindley’s [49] estimate of the slope.

Patefield [59] extended her work and showed that her results can be applied to other

errors in variables models. On the other hand, Gleser and Hwang [36] claimed that for

the majority of linear errors in variables models it is impossible to obtain confidence

intervals of finite width for certain parameters. Gleser has been active in writing about

errors in variables models. With a number of coauthors, he has written on various

aspects of the model. These include the unreplicated ultrastructural model [34], the

limiting distribution of least squares estimates [35], and estimating models with an

unknown variance covariance matrix [37].

2.10 Total Least Squares

Total least squares is a method of estimating the parameters of a general linear errors

in variables model and was introduced by Golub and Van Loan [38], which is frequently

cited in the computational mathematics and engineering literature. Broadly speaking,

total least squares may be viewed as an optimisation problem with an appropriate cost

function. The standard formulation of the total least squares problem is as follows.

Consider a linear measurement error model

AX ' B
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where A = A0 + Ã and B = B0 + B̃. It is assumed that the underlying physical

relationship A0X0 = B0 exists.

In total least squares estimation, a matrix D = [AB] is constructed which contains the

measured data, and the parameter matrix X is to be estimated. There is an assump-

tion that there exists a true unknown value of the data D0 = [A0B0] and a true value

of the parameters X0 such that A0X0 = B0. However, the measured data D depends

on some additive error D̃ = [ÃB̃] so that D = D0 + D̃.

The ordinary least squares method gives a solution X such that the Euclidean norm

||AX−B|| is minimised. The total least squares technique applies a small correction

(measured by the Euclidean norm) ∆D = [∆A∆B] to the matrix D such that the

equations (A + ∆A)X = B + ∆B are readily solved. Solutions for this system of

equations are obtained by computing its singular value decomposition, and this is the

precise topic of the paper by Golub and Van Loan [38] mentioned earlier.

The total least squares methodology has been extended to generalised total least

squares (where the errors are allowed to be correlated), and more recently element-

wise total least squares (which deals with non-identically distributed errors). For a

brief review of total least squares and its related methods, see for example Markovsky

and Van Huffel [52]. A complete monograph on the topic has been written by Van

Huffel and Vandewalle [70]. Cheng and Van Ness [14] noted that total least squares is

in its most simple version, orthogonal regression. Hence, this methodology may not be

appropriate when there is some different information available on a parameter.

2.11 LISREL

As well as total least squares, another method of estimation which had its origins from

computational mathematics is LISREL (which stands for Linear Structural Relation-

ships). LISREL is an example of a structural equation model, and computer software
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to implement such a model was created by Joreskog and Sorbom (see for example [43]).

To use their notation, the LISREL model is formulated as follows:

η = Bη + Γξ + ζ (2.9)

Y = Λyη + ε (2.10)

X = Λxξ + δ (2.11)

where η is a (m× 1) vector, B is a square (m×m) matrix, Γ is a (m× n) matrix, ξ is

a (n× 1) vector, ζ is an (m× 1) vector, Y is a (p× 1) vector, Λy is a (p×m) matrix,

ε is a (p × 1) vector, X is a (q × 1) vector, Λx is a (q × n) matrix, and δ is a (q × 1)

vector. At a first glance, the LISREL model is a combination of two factor analysis

models, (2.10) and (2.11) into the structural setting of equation (2.9).

Our errors in variables model outlined in Section 1 may be fitted into a LISREL format

as follows. Take m = n = p = q = 1, B = 0, ζ = 0, Γ = β and Λx = Λy = 1. The

standard assumption of the LISREL model is to take E[ξ] = E[η] = 0. This constrains

us to take µ = α = 0 for our model in Chapter 1. The remaining parameters to be

estimated are β, σ2, σ2
δ and σ2

ε .

A LISREL model usually cannot be solved explicitly, and in this scenario an iterative

procedure to estimate the parameters is adopted. Essentially, this involves construct-

ing a set of estimating equations for the parameters. The usual methodology is to set

the sample variance covariance matrix equal to the theoretical variance covariance ma-

trix. The elements of the theoretical variance covariance matrix are nonlinear functions

of the model parameters Λx, Λy, Γ and the variance covariance matrices of ξ, ζ, δ and ε.

The LISREL model, (as in factor analysis), implies a particular structure for the the-

oretical variance covariance matrix. Johnson and Winchern [41] gave details of the

structure, and stated the following identities (they took B = 0 to simplify proceed-
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ings)

E[Y
¯

Y
¯
T ] = Λy(ΓΦΓT + ψ)ΛT

y + Θε

E[X
¯

X
¯
T ] = ΛxΦΛT

x + Θδ

E[X
¯

Y
¯
T ] = ΛyΓΦΛT

x

where E[ξξT ] = Φ, E[δδT ] = Θδ, E[εεT ] = Θε and E[ζζT ] = ψ. It is assumed that

the variables ζ, δ and ε are mutually uncorrelated. Also ζ is uncorrelated with ξ, ε is

uncorrelated with η and δ is uncorrelated with ξ.

The iteration procedure mentioned above begins with some initial parameter estimates,

to produce the theoretical variance covariance matrix which approximates the sample

theoretical variance covariance matrix. However, for this estimation procedure to occur,

there must be at least as many estimating equations as parameters. Indeed, Johnson

and Winchern [41] state that if t is the number of unknown parameters then the

condition

t ≤ 1

2
(p+ q)(p+ q + 1)

must apply to allow estimation of the parameters. For our model of Section 1, t = 4

(β, σ2, σ2
δ and σ2

ε) and 1
2
(p + q)(p + q + 1) = 3 and so we cannot use the LISREL

environment to estimate our parameters unless we assume something further known.

This ties in with the thoughts of Madansky [50] who stated that

“To use standard statistical techniques of estimation to estimate β, one

needs additional information about the variance of the estimators.”

Also, comparisons may be drawn between LISREL, the method of moments and maxi-

mum likelihood, as both of the latter methods also assume that there is some parameter

known to allow identifiability of the model.
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Applying the LISREL methodology to our model of Section 1, we get

E[Y
¯

Y
¯
T ] = β2σ2 + σ2

ε

E[X
¯

X
¯
T ] = σ2 + σ2

δ

E[X
¯

Y
¯
T ] = βσ2.

since for our model Φ = σ2, ψ = 0, Θδ = σ2
δ and Θε = σ2

ε . We can now equate

the theoretical variance covariance matrix to the sample variance covariance matrix to

construct the following three equations

σ2 + σ2
δ =

1

n

n∑
i=1

(xi − x̄)2 = sxx (2.12)

β2σ2 + σ2
ε =

1

n

n∑
i=1

(yi − ȳ)2 = syy (2.13)

βσ2 =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) = sxy (2.14)

which are identical to the method of moment estimating equations (and subsequently

the maximum likelihood estimating equations) outlined by Gillard and Iles [33].

The first order moment equations µ = x̄ and α + βµ = ȳ are missing as the LISREL

model assumes the data are centered, so µ and α are taken as known in the assumption

E[ξ] = E[η] = 0. There are three equations (2.12), (2.13), (2.14) and four parameters to

be estimated. Hence, in order to solve these equations explicitly we need to restrict the

parameter space by assuming something known (e.g. assume σ2
δ known). So LISREL

for our model is identical to the method of moments, and thus maximum likelihood.

As stated earlier, the method of moments is discussed by Gillard and Iles [33].

2.12 Review Papers and Monographs

Over the years several authors have written review articles on errors in variables re-

gression. These include Kendall [45], [46], Durbin [26], Madansky [50], Moran [53]

and Anderson [3]. Riggs et al [62] performed simulation exercises comparing some of

the slope estimators that have been described in the literature. There are two texts
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devoted entirely to the errors in variables regression problem, Fuller [27] and Cheng

and Van Ness [14]. Casella and Berger [11] has an informative section on the topic,

Sprent [66] contains chapters on the problem, as do Kendall and Stuart [47] and Dunn

[25]. Draper and Smith [23] on the other hand, in their book on regression analysis,

devoted only 7 out of a total of almost 700 pages to errors in variables regression. The

problem is more frequently described in Econometrics texts, for example Judge et al

[44]. In these texts the method of instrumental variables is often given prominence.

Carroll et al [10] described errors in variables models for non linear regression, and

Seber and Wild [64] included a chapter on this topic.
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