Fractional Perfect b -Matching Polytopes

Roger Behrend School of Mathematics Cardiff University

Full details: RB Fractional perfect b-matching polytopes In preparation

Outline

- (1) Define fractional perfect b -matching polytopes
- (2) Obtain theorems for the dimensions, faces and vertices of such polytopes
- (3) Present well-studied examples of such polytopes

Fractional Perfect b-Matching Polytope

Let:

- $G =$ undirected graph with vertex set V, edge set E (loops & multiple edges allowed)
- \bullet b = assignment of a positive number to each vertex of G

Define the fractional perfect b-matching polytope of G as:
\n•
$$
P(G, b) = \{x \in \mathbb{R}^E \mid x_e \ge 0 \text{ for all } e \in E, \sum_{e \in \delta(v)} x_e = b_v \text{ for all } v \in V\}
$$

 $=$ set of all assignments of nonnegative numbers to the edges of G such that the sum of numbers over all edges incident to a vertex v is the prescribed number b_v for that vertex

[a loop is considered as incident once with its associated vertex]

Example

(Corresponds to polytope of 3×3 symmetric doubly stochastic matrices)

Dimension of $\mathcal{P}(G, b)$

Theorem. If $\mathcal{P}(G, b)$ contains a completely positive point (i.e., if there is $x \in \mathcal{P}(G, b)$) with $x_e > 0$ for each $e \in E$), then $\mathcal{P}(G, b)$ has dimension $|E| - |V| + B$, where B is the number of bipartite components of G.

Proof

- $\mathcal{P}(G, b) = \{x \in \mathbb{R}^E \mid I_G x = b, x_e \geq 0 \text{ for each } e \in E\},\$ where I_G is the incidence matrix of G
- Therefore, if $\mathcal{P}(G, b)$ contains a completely positive point, then $\dim \mathcal{P}(G, b) = \dim(\text{kernel of } I_G)$

 $=$ (# columns of I_G) – (# rows of I_G) + dim(kernel of I_G ^T) $= |E| - |V| + \text{dim}(\text{kernel of } I_G^T)$

• dim(kernel of I_G^T) = (# bipartite components of G), since

 $I_G^T y = 0 \iff y_{v_1} + y_{v_2} = 0$ for all adjacent vertices $v_1 \& v_2$ $\Leftrightarrow y_v =$ $\begin{cases} 0, & v \text{ a vertex of a nonbipartite component} \\ \lambda_C, & v \text{ in colour class 1 of bipartite component } C \\ -\lambda_C, & v \text{ in colour class 2 of bipartite component } C \end{cases}$ with λ_C arbitrary for each C

Example

Therefore, dimension = $(\# \text{ edges}) - (\# \text{ vertices}) + (\# \text{ bipartite components})$ $= 6 - 3 + 0$ $= 3$

Explicitly:

 $\overline{ }$

Faces of $\mathcal{P}(G, b)$

- Let: $F = a$ nonempty face of $\mathcal{P}(G, b)$
- Define: the graph G_F of F as the graph obtained from G by deleting each edge e for which $x_e = 0$ for all $x \in F$

Then:

- F is affinely isomorphic to $\mathcal{P}(G_F, b)$
- dim $F = (\#$ edges of $G_F) |V| + (\#$ bipartite components of G_F) (since $\mathcal{P}(G_F, b)$ necessarily contains a completely positive point)

Vertices of $\mathcal{P}(G,b)$

- Let: $x = a$ point of $\mathcal{P}(G, b)$
- Define: the graph G_x of x as the graph obtained from G by deleting each edge e for which $x_e = 0$

Theorem. A point $x \in \mathcal{P}(G, b)$ is a vertex of $\mathcal{P}(G, b)$ if and only if each component of G_x either is acyclic or else contains a unique cycle with that cycle having odd length. [Note: loop $=$ cycle of length 1; 2 vertices connected by 2 edges $=$ cycle of length 2] Proof

x is a vertex of $\mathcal{P}(G, b)$

 \iff dim $\mathcal{P}(G_x, b) = 0$

 \iff each component C of G_x satisfies (# edges in C) – (# vertices in C) + 1 = 0 if C is bipartite or (# edges in C) – (# vertices in C) = 0 if C is nonbipartite

 \iff each component of G_x is acyclic or has ^a unique cycle, the length of which is odd [using standard results for bipartite graphs, trees & connected graphs with unique cycles]

Corollary. For G bipartite, $x \in \mathcal{P}(G, b)$ is a vertex of $\mathcal{P}(G, b)$ if and only if G_x is a forest.

Example

Standard Polytopes of Type $\mathcal{P}(G,b)$

\n- Polytopes in which
$$
\sum_{e \in \delta(v)} x_e = b_v
$$
 is replaced by $\sum_{e \in \delta(v)} x_e \leq b_v$ for certain $v \in V$.
\n- Attach extra loop to each such vertex v : \bullet \bullet \bullet \bullet b_v \bullet b_v \bullet b_v \bullet b_v $c \in \delta(v)$ b_v \bullet b_v b_v \bullet b_v $c \in \delta(v)$ b_v b_v b_v $c \in \delta(v)$ b_v b_v $c \in \delta(v)$ b_v b_v $c \in \delta(v)$ b_v $c \in \delta(v)$ $c \in$

• Polytopes which include conditions $x_e \leq c_e$ for certain $e \in E$, where c_e is a prescribed positive number for edge e_{\cdot} Insert 2 extra vertices into each such edge (Tutte 1954):

$$
\underbrace{0 \leq x_e \leq c_e}_{b_{v_1}} \qquad \longrightarrow \qquad \underbrace{x_e \qquad e^{-x_e}}_{c_e \qquad c_e} \qquad \underbrace{x_e}_{c_e} \qquad \underbrace{x_e}_{b_{v_2}}
$$

\n- Polytopes of flows or transshipments, i.e., G is a directed graph,
$$
0 \le x_e \le c_e
$$
 for all $e \in E$, $\sum_{e \in \delta_{\text{out}}(v)} x_e - \sum_{e \in \delta_{\text{in}}(v)} x_e = b_v$ for all $v \in V$.
\n

Insert extra vertex into each edge (Orden 1956; Ford, Fulkerson 1962):

$$
\begin{array}{ccccc}\n & x_e & & \longrightarrow & x_e & & \longrightarrow & c_e - x_e & \\
& b_{v_1} & & b_{v_1} + \sum_{e \in \delta_{\mathsf{in}}(v_1)} c_e & & c_e & b_{v_2} + \sum_{e \in \delta_{\mathsf{in}}(v_2)} c_e\n\end{array}
$$

- Faces of $\mathcal{P}(G, b)$. Already considered.
- Certain other matching-type polytopes. (see e.g. Schrijver 2003) e.g. $\mathcal{P}(G, b)$ with $b_v = 1$ for all v is the fractional perfect matching polytope of G; for G bipartite, it is the perfect matching polytope of G .
- Polytopes of magic labelings of graphs (e.g. Stanley 1973, 1976; Ahmed 2008). $\mathcal{P}(G, b)$ with $b_v = 1$ for all v is the polytope of magic labelings of G.
- Symmetric transportation polytope $\mathcal{N}(R)$ and related polytopes $\mathcal{N}(\leq R)$, $\mathcal{N}_{\leq W}(R)$ $& \mathcal{N}_{\leq W}(\leq R)$ (e.g. Brualdi 1976, 2006).
	- $\mathcal{N}(R) = \{\text{symmetric nonnegative } n \times n \text{ matrices with line sum vector } R\}$ $\cong \overline{\mathcal{P}(G,R)}$, where G is the complete graph K_n with a loop at each vertex
- Transportation polytope $\mathcal{N}(R,S)$ and related polytopes $\mathcal{N}(\leq R,\leq S)$, $\mathcal{N}_{\leq W}(R,S)$ $& \mathcal{N}_{\leq W}(\leq R, \leq S)$ (e.g. Brualdi 1976, 2006).
	- $\mathcal{N}(R, S) = \{$ nonnegative $m \times n$ matrices with row & column sum vectors $R \& S$ } $\cong \overline{\mathcal{P}(G, (R, S))}$, where G is the complete bipartite graph $K_{m,n}$
- Polytope of doubly stochastic matrices (Birkhoff or assignment polytope) (e.g. Birkhoff 1946).
	- $\mathcal{B}_n = \{$ nonnegative $n \times n$ matrices with all line sums 1 $\}$ $\cong \overline{\mathcal{P}(G, b)}$, where $G=K_{n,n}$ & $b_v=1$ for all v
- Certain polytopes related to polytope of doubly stochastic matrices. (see e.g. Brualdi 2006)
	- e.g. polytope of doubly substochastic matrices polytope of extensions of doubly substochastic matrices polytope of symmetric doubly stochastic matrices polytope of symmetric doubly substochastic matrices polytope of tridiagonal doubly stochastic matrices
- Alternating sign matrix polytope (RB, Knight 2007; Striker 2009).
	- $\mathcal{A}_n = \{$ all $n \times n$ real matrices with all complete line sums 1 & all partial line sums extending from each end of the line nonnegative} ≃ $\mathcal{P}(G, b)$, where $G =$ certain $n \times n$ grid-type graph & $b_v \in \{1, 2\}$ for all \overline{v}
- Polytope of all points of $\mathcal{P}(G,b)$ invariant under the action of a group H of automorphisms of G (RB—in preparation). $G \to G/H = (V/H, E/H) =$ 'orbit graph of G'