Osculating Paths and Oscillating Tableaux

Roger Behrend School of Mathematics Cardiff University

Full details: RB *Osculating paths and oscillating tableaux* Electronic J. Combinatorics 15 (2008) #R7 (60 pages)

Main Result

• There is a bijection between certain tuples of *osculating paths* and certain *generalized oscillating tableaux*

Motivation

- Generalize well-known bijections between certain tuples of *nonintersecting paths* and *semistandard Young tableaux*
- Improve understanding of combinatorics of *alternating sign matrices*

Osculating Paths

The underlying configuration:

- a by b rectangle of points with
 - rows labeled 1 to a from top to bottom
 - columns labeled 1 to b from left to right
 - the point in row i and column j labeled (i, j)
- r points chosen on lower boundary, $(a, \beta_1), \ldots, (a, \beta_r)$,
 - r points chosen on right boundary, $(lpha_1,b),\ \ldots,\ (lpha_r,b)$,

for some $\{\beta_1, \ldots, \beta_r\} = \beta$, $\{\alpha_1, \ldots, \alpha_r\} = \alpha$ with $\beta_1 < \ldots < \beta_r$, $\alpha_1 < \ldots < \alpha_r$

Let $OP(a, b, \alpha, \beta)$ be the set of all *r*-tuples of paths in which

- the k-th path of a tuple starts at (a, β_k) and ends at (α_k, b)
- each path of a tuple can take only unit steps up or right
- different paths of a tuple are allowed to meet at lattice points, i.e. *osculate*, but not cross or share lattice edges

Alternating Sign Matrices

Let ASM (a, b, α, β) be the set of all $a \times b$ matrices A for which

- each entry of A is 0, -1 or 1
- along each row and column of A the nonzero entries, if there are any, alternate in sign starting with a 1

•
$$\sum_{j=1}^{b} A_{ij} = \delta_{i\in\alpha}$$
, $i = 1, \dots, a$

•
$$\sum_{i=1}^{a} A_{ij} = \delta_{j\in\beta}$$
, $j = 1, \dots, b$

e.g.
$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix} \in \mathsf{ASM}(4, 6, \{1, 2, 3\}, \{1, 4, 5\})$$

 \Rightarrow ASM $(n, n, [n], [n]) = \{$ standard $n \times n \text{ ASMs} \}$ (with $[n] \equiv \{1, \dots, n\}$)

Osculating Path – ASM Correspondence

gives a standard bijection between $OP(a, b, \alpha, \beta)$ and $ASM(a, b, \alpha, \beta)$

Known Enumeration Formulae

- Standard ASMs: $|OP(n, n, [n], [n])| = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!} (Zeilberger 1996, Kuperberg 1996)$
- Refined ASM: $|OP(n, n + 1, [n], [n + 1] \setminus \{n + 1 m\})| = \frac{(2n-m)!(n+m)!}{n! m! (n-m)!} \prod_{i=1}^{n} \frac{(3i-2)!}{(n+i)!}$ (Zeilberger 1996, Fischer 2007)
- Related case: $|OP(n, n + m, [n], [n 1] \cup \{n + m\})| = \frac{1}{(n-1)! \, m!} \prod_{i=0}^{n-2} \frac{(3i+1)!}{(n+i)!} \sum_{i=0}^{n-1} \frac{(2n-2-i)! \, (n-1+i)! \, (m+i)!}{i!^2 \, (n-1-i)!}$ (Fischer 2007)
- Vertically Symmetric ASMs: $|OP(n, 2n 1, [n], \{1, 3, ..., 2n 1\})| = \prod_{i=1}^{n} \frac{(6i-2)!}{(2n+2i)!}$ (Kuperberg 2002)
- Horizontally and Vertically Symmetric ASMs:

$$|\mathsf{OP}(n, n, \{1, 3, \dots, 2\lceil \frac{n}{2} \rceil - 1\}, \{1, 3, \dots, 2\lceil \frac{n}{2} \rceil - 1\})| = \frac{(\lfloor \frac{3n}{2} \rfloor + 1)!}{3^{\lfloor \frac{n}{2} \rfloor} (2n+1)! \lfloor \frac{n}{2} \rfloor !} \prod_{i=1}^{n} \frac{(3i)!}{(n+i)!}$$
(Okada 2006)

Partitions / Young diagrams

For external parameters a, b, α and β , define the partition / Young diagram

$$\lambda_{a,b,lpha,eta} := [a] \times [b] \setminus (b - eta_1, \dots, b - eta_r \,|\, a - lpha_1, \dots, a - lpha_r)$$

(using complement and Frobenius notation)

e.g.
$$\lambda_{4,6,\{1,2,3\},\{1,4,5\}} = [4] \times [6] \setminus (6-1, 6-4, 6-5 \mid 4-1, 4-2, 4-3)$$

= $[4] \times [6] \setminus (5, 2, 1 \mid 3, 2, 1)$

ASM cases:

	$a,\ b,\ \alpha,\ \beta$	$\lambda_{a,b,lpha,eta}$
standard	$n,\;n,\;[n],\;[n]$	Ø
refined	$n, n+1, [n], [n+1] \setminus \{n+1-m\}$	$(m)^t$
related	$n, n+m, [n], [n-1] \cup \{n+m\}$	(m)
ver. sym.	$n, \ 2n\!-\!1, \ [n], \ \{1, 3, \ldots, 2n\!-\!1\}$	$(n-1,n-2,\ldots,1)$
hor. & ver. sym.	$n, n, \{1, 3, \dots, 2\lceil \frac{n}{2} \rceil - 1\}, \{1, 3, \dots, 2\lceil \frac{n}{2} \rceil - 1\}$	$(n-1,n-2,\ldots,1)$

Vacancies and Osculations

For path tuple $P \in \mathsf{OP}(a, b, \alpha, \beta)$ define

- vacancies: points of rectangle through which no path passes, i.e.
- osculations: points of rectangle through which two paths pass, i.e.

vacancies: (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (4,2), (4,3) osculations: (2,5), (3,4)

Lemma: Each $P \in OP(a, b, \alpha, \beta)$ is uniquely determined by its vacancies and osculations

⇒ can place path segments successively, moving diagonally downward and rightward from upper and left boundaries of rectangle

Lemma: (number of vacancies in P) – (number of osculations in P) = $|\lambda_{a,b,\alpha,\beta}|$ for each $P \in OP(a, b, \alpha, \beta)$

Proof:

- Start with nonintersecting path tuple with external parameters a, b, α and β , and vacancies forming $\lambda_{a,b,\alpha,\beta}$ in top left corner
- Obtain P by flips $\bigcap \longleftrightarrow$
- Each flip: moves a vacancy/osculation or creates a vacancy and an osculation or removes a vacancy and an osculation

Oscillating Tableaux

For a Young diagram λ and nonnegative integer l, let $OT(\lambda, l)$ be the set of *oscillating tableaux* of *shape* λ and *length* l, i.e. sequences of l+1 Young diagrams in which

- first diagram is $\ensuremath{\emptyset}$
- last diagram is λ
- successive diagrams differ by the addition or deletion of a single square

Theorem:
$$|OT(\lambda, l)| = \binom{l}{|\lambda|} (l - |\lambda| - 1)!! f^{\lambda}$$

where $f^{\lambda} =$ number of standard Young tableaux of shape λ

Proof: Bijection between $OT(\lambda, l)$ and certain pairs (matching, standard Young tableau)

Special cases:

e.g.
$$(\emptyset, \Box, \Box, \emptyset, \Box, \emptyset) \longleftrightarrow$$
 $(0, 0, 0, 0) \longleftrightarrow$ $(0, 0, 0) \longleftrightarrow$

Define the *profile* of an oscillating tableau $\eta = (\eta_0, \eta_1, \ldots, \eta_l)$ as

$$\Omega(\eta) := (j_1 - i_1, \dots, j_l - i_l)$$

where (i_k, j_k) = position of square by which η_k differs from η_{k-1}

• Each oscillating tableau is uniquely determined by its profile

Generalized Oscillating Tableaux

For a positive integer n and integer q, define the set of *generalized oscillating* tableaux GOT (n, q, λ, l) as the set of pairs $((t_1, \ldots, t_l), \eta)$ in which

- each t_k is an integer between 1 and n
- η is an oscillating tableau of shape λ and length l

•
$$t_k < t_{k+1}$$
, or $t_k = t_{k+1}$ and $\Omega(\eta)_k \prec_q \Omega(\eta)_{k+1}$, for each k ,
where \prec_q is the ordering of the integers defined by
 $z \prec_q z'$ if and only if $|z-q| > |z'-q|$ or $z-q = q-z' < 0$
i.e., $\ldots \prec_q q-2 \prec_q q+2 \prec_q q-1 \prec_q q+1 \prec_q q$

Paths with a Fixed Number of Vacancies and Osculations

Let $OP(a, b, \alpha, \beta, l) = \{ P \in OP(a, b, \alpha, \beta) \mid (number of vacancies in P) + (number of osculations in P) = l \}$

Main Result

Theorem: There is a bijection between $OP(a, b, \alpha, \beta, l)$ and $GOT(min(a, b), b-a, \lambda_{a,b,\alpha,\beta}, l)$

Given a path tuple P the corresponding generalized oscillating tableau (t, η) is obtained as:

(1) For each lattice point
$$(i, j)$$
, define $L_{i,j} := \begin{cases} \max(i, j+a-b), a \leq b \\ \max(i-a+b, j), a \geq b \end{cases}$

- (2) Order the l vacancies and osculations of P as $(i_1, j_1), \ldots, (i_l, j_l)$ with $L_{i_k, j_k} < L_{i_{k+1}, j_{k+1}}$, or $L_{i_k, j_k} = L_{i_{k+1}, j_{k+1}}$ and $j_k i_k \prec_{b-a} j_{k+1} i_{k+1}$
- (3) Then $t = (L_{i_1,j_1}, \dots, L_{i_l,j_l})$ and η is the oscillating tableau with profile $\Omega(\eta) = (j_1 - i_1, \dots, j_l - i_l)$
- If (i_k, j_k) is a vacancy, respectively osculation, of P, then η_k is related to η_{k-1} by the addition, respectively deletion, of a square

Corollary: The number of osculating path tuples can be written as a sum over oscillating tableaux

$$|\mathsf{OP}(a, b, \alpha, \beta, l)| = \sum_{\eta \in \mathsf{OT}(\lambda_{a, b, \alpha, \beta}, l)} \left(\begin{array}{c} \min(a, b) + |\mathsf{Asc}_{b-a}(\eta)| \\ l \end{array} \right)$$

where
$$\operatorname{Asc}_q(\eta) := \{k \mid \Omega(\eta)_k \prec_q \Omega(\eta)_{k+1}\}$$

- (2) Ordered list of vacancies and osculations is (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (1,4), (3,4), (2,5), (4,2), (4,3)
- (3) t = (1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4), and $\Omega(\eta) = (0, 1, 2, -1, 0, 1, 3, 1, 3, -2, -1)$,

so η is the previous example of an oscillating tableau,

Further Example: $OT(\emptyset, 6)$

 $(-2\prec_0 2\prec_0 -1\prec_0 1\prec_0 0)$

η_0	η_1	η_2	η_3	η_4	η_5	η_6	$\Omega(\eta)_1$	$\Omega(\eta)_2$	$\Omega(\eta)_3$	$\Omega(\eta)_4$	$\Omega(\eta)_5$	$\Omega(\eta)_6$	$Asc_0(\eta)$
Ø		Ø		Ø		Ø	0	0	0	0	0	0	Ø
Ø				Ø		Ø	0	1	1	0	0	0	{3}
Ø		\square		Ø		Ø	0	-1	-1	0	0	0	{3}
Ø		Ø				Ø	0	0	0	1	1	0	{5}
Ø		Ø		\square		Ø	0	0	0	-1	-1	0	{5}
Ø						Ø	0	1	1	1	1	0	{5}
Ø						Ø	0	-1	-1	-1	-1	0	{5}
Ø				\square		Ø	0	1	1	-1	-1	0	{5}
Ø			₽	\square		Ø	0	-1	1	1	-1	0	{2,5}
Ø						Ø	0	-1	-1	1	1	0	{3,5}
Ø			₽			Ø	0	1	-1	1	-1	0	{3,5}
Ø			P			Ø	0	1	-1	-1	1	0	{4,5}
Ø						Ø	0	1	2	2	1	0	{4,5}
Ø		Β		B		Ø	0	-1	-2	-2	-1	0	{4,5}
Ø		Η	₽			Ø	0	-1	1	-1	1	0	$\{2, 4, 5\}$

 \Rightarrow Number of $n \times n$ standard ASMs with 3 osculations and 3 vacancies

$$= |OP(n, n, [n], [n], 6)| = \sum_{\eta \in OT(\emptyset, 6)} \binom{n + |Asc_0(\eta)|}{6}$$
$$= \binom{n}{6} + 7\binom{n+1}{6} + 6\binom{n+2}{6} + \binom{n+3}{6}$$

Part of Proof of Bijection

For $P \in OP(a, b, \alpha, \beta, l)$, create a sequence of l+1 path tuples in the a by b rectangle in which

- first tuple has no vacancies or osculations
- each successive tuple has a single additional vacancy or osculation of *P*, using ordering of bijection

Implies

- successive tuples differ by flips along single diagonal beyond added vac./osc.
- successive boundary conditions differ at two adjacent boundary points
- Young diagrams of successive boundary conditions differ by a single square (with addition for a vacancy, deletion for an osculation)
- first & last Young diagrams are $\emptyset \& \lambda_{a,b,\alpha,\beta}$, so sequence is in $OT(\lambda_{a,b,\alpha,\beta}, l)$

Possible Further Work

 Use the osculating paths – oscillating tableaux bijection, other known bijections and Lindström–Gessel–Viennot theorem to obtain determinantal enumeration formulae, e.g.

$$\sum_{l=0}^{n(n-1)/2} \left|\mathsf{OP}(n,n,[n],[n],2l)
ight| x^l \,=\, \det_{0\leq i,j\leq n-1}\left(inom{i+j}{i}-x^i\,\delta_{i,j+1}
ight)$$

- Study osculating paths with other external configurations
- Find representation theoretic interpretation of generalized oscillating tableaux