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Outline

Define the Birkhoff polytope B, and alternating sign matrix polytope A,.

Give counterparts for A, of some standard results for 5,
e.g. characterization of faces and vertices.

Consider integer points of dilates of B,, and A,,.

Identify connection between A,, and higher spin vertex models with
domain wall boundary conditions.
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Polytopes

Polytope: a bounded intersection of finitely-many closed halfspaces (and
hyperplanes) in R?, i.e. a bounded set {z € RY | a1.2 <b1,...,a;.x < by},
for some fixed a1,...,a; € R?, by,...,b; €R

Equivalently (Minkowski, Weyl) a convex hull of finitely-many points in R¢,
i.e.aset {Avr 4+ ...+ Anvm | A1, A >0, A4 = 1
for some fixed vy, ..., v, € RY

Face of polytope P: intersection of P with any hyperplane H for which P is
contained on one side of H.

Obtained by changing some inequalities a;.x < b; to equalities a;.x = b;.
Dimension of face F of polytope: dimF =dim{\z1+(1—XN)xz | 1,22 € F, X € R}

Vertex of polytope P: point of P which does not lie in the interior of any line
segment in P.
Corresponds to face of dimension O.



Birkhoff and Alternating Sign Matrix Polytopes

e Birkhoff polytope (polytope of doubly stochastic matrices):

11 ... L1n n n
B, = : : e R" wijZO,ZCCZ'j/:ZCBi/jZ]., for all 1,7=1,...,n

Inl .. Tpn 7'=1 =1

e cach entry is nonnegative }

= <nxn real matrices .
e cach complete row & column sum is 1

e Alternating sign matrix polytope:
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J n 7 n
An — < . . E R’n ]; n]—] 1= =1 >
Tnl ... Inn Za:z'j/ZZZCi/jzl, forall ¢, =1,...,n
\ j'=1 =1 )
( e cach partial row & column sum extending from
— { nxn real matrices each end of the row or column is nonnegative
\ e each complete row & column sum is 1
Properties: o B, C A, e dimB, =dimA4, = (n—1)?
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e 3, contains all nxn permutation matrices

e A, contains all nxn alternating sign matrices
(matrices with entries 0, 1 & —1 in which the nonzero entries alternate

in sign along each row & column, and each row & column sum is 1)

eg. /0 1 0O 6 .1 .3
0 0 1|,(0 8 2| eBscAs

1 00 4 1 .5
0O 0 1 O 3 0 6 .1
0 1 -1 1 2 5 -6 .9
1 -1 1 ofl'|ls5 258 1 of €A
0O 1 0 0 O 1 0 O



Graph Versions of B, and A,

labelings of edges of
o 3, «—
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Faces of B, and A,

Graph Gr of a face F' of B, obtained from K, , by deleting each edge
corresponding to an entry which is O for all elements of F

Graph Gr of a face F of A,: obtained from nxn grid graph with intermediate
vertices by deleting each edge corresponding to a partial row or column sum
which is O for all elements of F

Lattice isomorphism: each mapping from faces to graphs is an isomorphism be-
tween the lattice of faces and a lattice of certain ‘elementary’ spanning subgraphs

Dimension of face F' with graph Gr: using certain results for polytopes & graphs,
dim FF = dim(kernel of incidence matrix of Gg)

= (# of edges in Gr) — (# of vertices in Gr) 4+ (# of components in Gr)

(# of edges in Gr) — 2n + (## of components in Gr), for B,
(# of bounded faces in Gr), for A, (using Euler planar graph formula)

{$633|ZC13:$21:$22=$33=O} — M dim =5—-6+42=1

{:CE.A4|CE31—|—:C32=O} — 11 dim = 8




Number of faces of Bs:

dimensionH—l‘O‘ 1 ‘ 2 ‘3‘4

numberH 1 ‘6‘15‘18‘9‘1

Number of faces of As:

dimensionH—l‘O‘ 1 ‘ 2 ‘3‘4

number | 1 |7 /17|18 |81



Vertices of B,, and A,
e Graph G, of x € B,: obtained from K, , by deleting each edge corresponding
to a zero entry of x

e Graph G, of x € A,,: obtained from n x n grid graph with intermediate vertices
by deleting each edge corresponding to a zero partial row or column sum of x

Characterization of vertices: setting dim(F) = 0 in previous formula gives
x is a vertex of B,, or A, if and only if G, is a forest

Implies: e vertices of B, are all n x n permutation matrices (Birkhoff 1946)
e vertices of A, are all n x n ASMs (RB, Knight 2007, Striker 2009)
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e graph of permutation matrix < perfect matching of K, ,

—=e o—o

e graph of alternating sign matrix « modified configuration of 6-vertex model on
nxn grid with domain-wall boundary conditions



Generalizations of B,, and A,
For positive r1,...,7m, ¢1,...,¢cp With r14+...47r,, = c1+...Fcn:

e Transportation polytope

e ecach entry is nonnegative
T(r,c) := < mxn real matrices | e row sum ¢ is r;, for eachi=1,...,m

e column sum j is ¢;, for each 3 =1,...,n

e Partial sum transportation polytope

( e cach partial row & column sum extending from)

each end of the row or column is nonnegative
e row sum ¢ is r;,, foreach:=1,...,m
\ e column sum j is ¢;, for each 3 =1,...,n

P(r,c) := { mxn real matrices

Previous results for B, and A, can be generalized



Integer Points of Dilates of B,, and A,

For a nonnegative integer r:

e Semimagic squares
e cach entry is nonnegative }

SMS = xn integer matrices .
(n,7) {n " d e cach complete row & column sum is r

= 7" N (rB")

e Generalized alternating sign matrices
ASM(n,r) =
e each partial row & column sum extending from
nxn integer matrices each end of the row or column is nonnegative

e cach complete row & column sum is r

= 7" N (rA")
0 1 1 0 0
8 g é ? 1 -1 0 2 0
e.g. [3 0 & | €SMS4,3) c ASM(4,3) 0 1 1 -2 2| cASM(5,2)
1 0 0 1 O
0102 O 1 0 1 0

e {sums of » nxn permutation matrices} ¢ SMS(n,r),
{sums of r nxn standard alternating sign matrices} € ASM(n,r)
e Reverse containments also, less trivially, valid



Cardinalities of SMS(n,r) and ASM(n,r)

ISMS(n,r)|| =0 1 2 3 4
n=1 1 1 1 1 1
2 1 2 3 4 5
3 1 §) 21 55 120
4 1 24 282 2008 10147
5 1 120 6210 153040 2224955
§) 1 720 202410 20933840 1047649905
|ASM(n,r)|| r=0 1 2 3 4
n=1 1 1 1 1 1
2 1 2 3 4 5
3 1 7 26 70 155
4 1 42 628 5102 28005
5 1 429 417384 1507128 28226084
§) 1 7436 7517457 1749710096 152363972022

e n = 1: single 1x1 matrix (r)

7 r—1

o n=2: ( | )forizO,l,...,r
T —1 1



e Ehrhart theory implies |SMS(n,r)| & |ASM(n,r)| for fixed n are polynomials in r

(n—1)°
r—+ k
of the form "
DI (et

o o= () ()5
wswoor=( )12+
sms(an| = (T5%) 14 (T0) o7 (T5°) +1es (T50) +
o7 (757) 414 (50) + (75°)
oo (75) wars (57) +oo2(7°) +
7
5

(5 +(%)

), where ¢, are nonnegative integers.

IASM(4,7)| = 3(

r4+
9
253 (



e Known formulae for fixed r:

ISMS(n,0)| = |ASM(n,0)| = 1 (single nxn zero matrix)
ISMS(n,1)] = n! (nxn permutation matrices)
T (3i+1)!
IASM(n,1)| = |[*=—=F (nxn standard alternating sign matrices)
Pl (n+1)!
- (n1)? (27)!
SMS(n,2)| = .
ISMS(n,2)] ; 2nFi (i)2 (n—1)!
(n!)? (3i+j)!
SMS(n,3)| = >

22itj 32tk (§1)2 51 k!
nonneg. integers
1,7,k with i+j4+k=n



Higher Spin Vertex Models with
Domain-Wall Boundary Conditions

Configuration of spin-g vertex model on nxn grid with generalized DWBC:
assighment of H;; to horizontal edges and V;; to vertical edges with
o Hi;,Vije{—5,—5+1,...,5-1,5}
o Hio=Voj = —3
o Hy, =V, =% (right & lower boundaries)
e Hij1+Vij=Via,;+ H;; (‘ice condition’)

(left & upper boundaries)

_r _r _r
2 2 2
_r Hy r
2 2
‘/11 V]2 ‘/in
_r Hy T
2 2
Via J
H, ;4 H,;
Vij
o H, T
2 2

N3
N3
N3



o ASM(n,r) & {configurations of spin-5 vertex model on nxn grid with DWBC}
are in bijection, with A € ASM(n,r) & corresponding configuration (H,V)
related by:

J i
T T
Eﬁj::"§”+'§£:f4w'a ‘Qj::'—5§4-j£:f%7, Aij = Hyy — Hij1 = Vi —Via

J=1 i'=1
-1 -1 -1 -1 -1
~1| 0 1 1
-1 |0 0 -1 | -1
O 1 1 0 O _

e.d. 1 —— 1
(1 10 2 O\ Oo 1 O1 11 .
O 1 1 -2 2| eASM(5,2) +— -1 —T 5 I 1
1 0 O 1 O 0 0 1 -1 |1
\0 1 0 1 0 -1 1

0 0 0 1
1 0 1 0 1
1| 0 0 1




Integrable Boltzmann weights can be assighed to vertex configurations.

For r = 1 can use integrable six-vertex model weights

_i i i -1
2 2 2

w>\<+) = wA,Z(%+%) = sin(z+\), wA,Z(%+%) = w>\<+) = sin(z—\),

wne (o) = e (3 ]) = sin(2y

e > = spectral parameter A = Crossing parameter

Nl

NI—
Nl

NI=

N~
Nl

e Yang-Baxter equation satisfied
e Related to spin-1, i.e. highest weight 1, irreducible representation of si(2,C)

27
e Partition function with spectral parameter z;—y; at vertex (¢,j) (for some x =
(x1,...,2n), y = (y1,...,yn)) 9given by Izergin-Korepin determinant
Via,

Z(n, )\, x, y) = Z H W\, z;—y; (Hfz,j—l '—l—‘Hm‘ )
Vi

configurations %J=1
(H,V)

_sin@V [T sin(@i—y,— M) sin(@i—y,42) det ( 1 )

e Can be used in derivation of formula for |[ASM(n,1)| (Kuperberg 1996)




Boltzmann weights for » > 1 obtained by applying fusion to r = 1 weights:

,Ul

o W), (h’+h) given in terms of rxr block of spin—% weights with

spectral parameter of (k,l) entry of block = 2z 4+ 2(I—k)X and

certain eigenvector entries P of fusion projectors applied at boundaries
(Kulish, Reshetikhin, Sklyanin 1981)

e Also satisfy Yang-Baxter equation

e Related to spin-Z, i.e. highest weight r, irreducible representation of si(2,C)

e.g. r=2:

v P(27 U,)b11b12

b11 b12

W), - (“” + “12) W), 242 (“12 + “13)

1 / b21 b22
sin(z—A) sin(z4+\) Z P(z’ h )a11a21 P(27 h)a,13a23

b1 b22

a,b
WA, z—2)\ (“21 + "’22) W,z (“22 + ”’23)

b31 b32

P(27 ,U)b31b32




which gives

-1 1

W2 Az (1+1) = W)\, (1»—[—~1) = sin(z+X) sin(z+3)\)

-1 1

1 -1

_1.—'_._1) = W2\, (o»—[—m) = W2 )\ (o-—'—oo> = W2\ 2 (1-——-1) = Sin(Z—)\) Sin(Z—I—)\)

(
(
wo s (s leo) = wos (o) = wo s (o) = wonz (o) =sin(@N) sin(z+2)
(
(

0



Partition function for arbitrary r with spectral parameter z;—y; at vertex (i,j) given
in terms of certain nr x nr Izergin-Korepin determinant:
Z(n,r,\,z,y) = ... detM(n,r,\, z,y)
1
sin(z; —y;+(2(1—k) = 1)A) sin(z;—y;+(2(—k)+1)N)
1,7=1,...n;, k,l=1,...,r

with M (n,r, \, x, y)(z’,kz),(j,l) —

(Caradoc, Foda, Kitanine 2006)

Sketch of derivation:
o Z(n,r,\,x,y) involves nxn block of »xr blocks of spin-% weights

e Fusion projectors satisfy push-through property which allows all internal projector
eigenvectors to be moved to boundaries, where they give spin-% DWBC

e Z(n,r,\,xz,y) is then proportional to spin-% partition function on nr x nr
grid with DWBC and certain spectral parameter assignments



Generalized Osculating Path Collections

(n,r) osculating path collection: nr noncrossing paths on nxn grid for which

e r paths begin/end at each point in last row/column
e only unit upward & rightward steps allowed
e at most r paths pass along any edge

ASM(n,r) & {(n,r) osculating path collections} are in bijection, with
corresponding A € ASM(n,r) & path collection related by:

J
(# paths on horizontal edge between (i,5) & (i,7+1)) = ZAU’
=1

(# paths on vertical edge between (i,5) & (i+1,5)) = > Ay

=1
0 1 1 0 0
e.g. i
(1 10 2 o\
0 1 1 —2 2|easm2)  — _
1 0 0 1 0 | |
\0 1 0 1 o0/ '




e Separability of paths implies any matrix in ASM(n,r) is a (not necessarily unique)
sum of r standard nxn alternating sign matrices

e.g.
y, p— _I_
[0 [ [ s
gives
O 1 1 0 O O 1 0 0 O O 0 1 0 O
1 -1 0 2 O 1 -1 0 1 O O 0 O 1 O
o 1 1 22| =10 0O 1 -1 1} +]1]0 1 O -1 1
1 0 0O 1 O O 1 0 0 O 1 -1 0 1 O
O 1 0 1 O O 0O O 1 O O 1 0 0 O



Generalized Fully Packed Loop Configurations

(n,r) fully packed loop configuration:

Collection of noncrossing paths on nxn grid for which
e numbers of path endpoints are alternately 0 & r along boundaries
e only unit upward, downward, leftward & rightward steps allowed
e exactly r path segments pass through each internal vertex

Surjection from fully packed loop configuration to A € ASM(n,r) given by

J_ Ay, i+7 odd,
<§%—1 ;Zt{'_j even) = (# segments on edge between (i,5) & (43,j+1))
j'=j+1 3"

(Zgzi—i—l Ai’j, 1+ odd,

S A, ik even ) = (# segments on edge between (7,5) & (i+1,7%))
i'=1 47>

e.d. J |
D
— ) O 1 1 0 O
1 -1 0 2 O
B S — 0 1 1 —2 2| eASM(5,2)
] 1 0 O 1 O
= g O 1 0 1 O
I
|




e For r > 2, several fully packed loop configurations can map to same matrix, since

particular numbers of paths on edges can have several connections at vertices
1

e.g. forr=2, 1+1 can connect as ~Jr— or jL
1

Therefore, # (n,r) fully packed loop configurations
= weighted sum over ASM(n, r)

e Higher spin link patterns and integrable loop models studied by Zinn-Justin 2007



Summary

e T he alternating sign matrix polytope A, naturally extends the Birkhoff polytope.
— The faces of A, correspond to certain spanning subgraphs of an n xn
grid-type graph.
— The vertices of A,, are all nxn alternating sign matrices.

e The set ASM(n,r) of integer points of the r-th dilate of A, is in bijection with
the set of configurations of spin-% integrable vertex models on an nxn grid with
generalized domain-wall boundary conditions.

— The partition function of these models can be expressed as an Izergin—Korepin-
type determinant.

— There is also a bijection between certain osculating path collections and
ASM(n,r), and a surjection from certain fully packed loop configurations
to ASM(n,r).



