Polytopes and Alternating Sign Matrices

Roger Behrend School of Mathematics Cardiff University

Outline

- Define the Birkhoff polytope \mathcal{B}_n and alternating sign matrix polytope \mathcal{A}_n .
- Give counterparts for A_n of some standard results for B_n,
 e.g. characterization of faces and vertices.
- Consider integer points of dilates of \mathcal{B}_n and \mathcal{A}_n .
- Identify connection between A_n and higher spin vertex models with domain wall boundary conditions.

Some References

- R Behrend & V Knight *Higher spin alternating sign matrices* Electronic J. Combinatorics 14 (2007) #R83
- J Striker *The alternating sign matrix polytope* Electronic J. Combinatorics 16 (2009) #R41
- R Behrend & V Knight *Partial sum transportation polytopes* In preparation
- R Behrend *Fractional perfect b-matching polytopes* In preparation

Polytopes

- *Polytope*: a bounded intersection of finitely-many closed halfspaces (and hyperplanes) in \mathbb{R}^d , i.e. a bounded set $\{x \in \mathbb{R}^d \mid a_1 . x \leq b_1, \ldots, a_k . x \leq b_k\}$, for some fixed $a_1, \ldots, a_k \in \mathbb{R}^d$, $b_1, \ldots, b_k \in \mathbb{R}$ Equivalently (Minkowski, Weyl) a convex hull of finitely-many points in \mathbb{R}^d , i.e. a set $\{\lambda_1 v_1 + \ldots + \lambda_m v_m \mid \lambda_1, \ldots, \lambda_m \geq 0, \ \lambda_1 + \ldots + \lambda_m = 1\}$, for some fixed $v_1, \ldots, v_m \in \mathbb{R}^d$
- Face of polytope \mathcal{P} : intersection of \mathcal{P} with any hyperplane H for which \mathcal{P} is contained on one side of H.

Obtained by changing some inequalities $a_i \cdot x \leq b_i$ to equalities $a_i \cdot x = b_i$.

- Dimension of face F of polytope: dim $F = \dim\{\lambda x_1 + (1-\lambda)x_2 \mid x_1, x_2 \in F, \lambda \in \mathbb{R}\}$
- Vertex of polytope P: point of P which does not lie in the interior of any line segment in P.
 Corresponds to face of dimension 0.

Corresponds to face of dimension 0.

Birkhoff and Alternating Sign Matrix Polytopes

• Birkhoff polytope (polytope of doubly stochastic matrices):

$$\mathcal{B}_{n} := \left\{ \begin{pmatrix} x_{11} \dots x_{1n} \\ \vdots & \vdots \\ x_{n1} \dots x_{nn} \end{pmatrix} \in \mathbb{R}^{n^{2}} \middle| \begin{array}{l} x_{ij} \ge 0, \\ \sum_{j'=1}^{n} x_{ij'} = \sum_{i'=1}^{n} x_{i'j} = 1, \\ i'=1 \\ each \text{ entry is nonnegative} \\ each \text{ complete row & column sum is 1} \\ \end{array} \right\}$$

• Alternating sign matrix polytope:

$$\mathcal{A}_{n} := \left\{ \begin{pmatrix} x_{11} \dots x_{1n} \\ \vdots & \vdots \\ x_{n1} \dots x_{nn} \end{pmatrix} \in \mathbb{R}^{n^{2}} \middle| \begin{array}{l} \sum_{j'=1}^{j} x_{ij'} \ge 0, \sum_{j'=j}^{n} x_{ij'} \ge 0, \sum_{i'=1}^{i} x_{i'j} \ge 0, \sum_{i'=i}^{n} x_{i'j} \ge 0, \\ \sum_{j'=1}^{n} x_{ij'} = \sum_{i'=1}^{n} x_{ij'} = 1, \text{ for all } i, j = 1, \dots, n \end{array} \right\}$$
$$= \left\{ n \times n \text{ real matrices} \middle| \begin{array}{l} \bullet \text{ each partial row \& column sum extending from each end of the row or column is nonnegative} \\ \bullet \text{ each complete row \& column sum is 1} \end{array} \right.$$

Properties: • $\mathcal{B}_n \subset \mathcal{A}_n$ • $\dim \mathcal{B}_n = \dim \mathcal{A}_n = (n-1)^2$ • $x \in \mathcal{B}_n \Rightarrow 0 \le x_{ij} \le 1$ • $x \in \mathcal{A}_n \Rightarrow -1 \le x_{ij} \le 1$

- \mathcal{B}_n contains all $n \times n$ permutation matrices
- A_n contains all n×n alternating sign matrices
 (matrices with entries 0, 1 & −1 in which the nonzero entries alternate
 in sign along each row & column, and each row & column sum is 1)

e.g.
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} .6 & .1 & .3 \\ 0 & .8 & .2 \\ .4 & .1 & .5 \end{pmatrix} \in \mathcal{B}_3 \subset \mathcal{A}_3$
 $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} .3 & 0 & .6 & .1 \\ .2 & .5 & -.6 & .9 \\ .5 & -.5 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \in \mathcal{A}_4$

Graph Versions of \mathcal{B}_n and \mathcal{A}_n

e.g.
$$\begin{pmatrix} .6 & .1 & .3 \\ 0 & .8 & .2 \\ .4 & .1 & .5 \end{pmatrix} \in \mathcal{B}_3 \quad \leftrightarrow \quad .6$$

$$\begin{pmatrix} .3 & 0 & .6 & .1 \\ .2 & .5 & -.6 & .9 \\ .5 & -.5 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \in \mathcal{A}_{4} \quad \leftrightarrow \qquad \begin{bmatrix} .3 & .7 & .3 & .7 & .9 & .1 \\ .7 & 1 & .4 & .9 \\ .3 & 0 & .6 & .1 \\ .5 & .5 & .5 & 1 & .9 \\ .5 & .5 & .5 & 0 & 1 \\ .5 & .5 & 0 & 1 & .1 & .9 \\ .5 & .5 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Faces of \mathcal{B}_n and \mathcal{A}_n

- Graph G_F of a face F of \mathcal{B}_n : obtained from $K_{n,n}$ by deleting each edge corresponding to an entry which is 0 for all elements of F
- Graph G_F of a face F of \mathcal{A}_n : obtained from $n \times n$ grid graph with intermediate vertices by deleting each edge corresponding to a partial row or column sum which is 0 for all elements of F
- Lattice isomorphism: each mapping from faces to graphs is an isomorphism between the lattice of faces and a lattice of certain 'elementary' spanning subgraphs
- Dimension of face F with graph G_F : using certain results for polytopes & graphs, $\dim F = \dim(\text{kernel of incidence matrix of } G_F)$
 - = (# of edges in G_F) (# of vertices in G_F) + (# of components in G_F) $=\begin{cases} (\# \text{ of edges in } G_F) - 2n + (\# \text{ of components in } G_F), \text{ for } \mathcal{B}_n \\ (\# \text{ of bounded faces in } G_F), \text{ for } \mathcal{A}_n \text{ (using Euler planar graph formula)} \end{cases}$

e.g.
$$\{x \in \mathcal{B}_3 \mid x_{13} = x_{21} = x_{22} = x_{33} = 0\} \leftrightarrow \qquad \text{dim} = 5 - 6 + 2 = 1$$

Number of faces of \mathcal{B}_3 :

dimension	-1	0	1	2	3	4
number	1	6	15	18	9	1

Number of faces of \mathcal{A}_3 :

dimension	-1	0	1	2	3	4
number	1	7	17	18	8	1

Vertices of \mathcal{B}_n and \mathcal{A}_n

- Graph G_x of x ∈ B_n: obtained from K_{n,n} by deleting each edge corresponding to a zero entry of x
- Graph G_x of $x \in A_n$: obtained from $n \times n$ grid graph with intermediate vertices by deleting each edge corresponding to a zero partial row or column sum of x

Characterization of vertices: setting dim(F) = 0 in previous formula gives x is a vertex of \mathcal{B}_n or \mathcal{A}_n if and only if G_x is a forest

Implies: • vertices of \mathcal{B}_n are all $n \times n$ permutation matrices (*Birkhoff 1946*)

• vertices of A_n are all $n \times n$ ASMs (RB, Knight 2007; Striker 2009)

- graph of permutation matrix \leftrightarrow perfect matching of $K_{n,n}$
- graph of alternating sign matrix \leftrightarrow modified configuration of 6-vertex model on $n \times n$ grid with domain-wall boundary conditions

Generalizations of \mathcal{B}_n and \mathcal{A}_n

For positive $r_1, ..., r_m, c_1, ..., c_n$ with $r_1 + ... + r_m = c_1 + ... + c_n$:

• Transportation polytope

 $\mathcal{T}(r,c) := \left\{ m \times n \text{ real matrices} \middle| \begin{array}{l} \bullet \text{ each entry is nonnegative} \\ \bullet \text{ row sum } i \text{ is } r_i, \text{ for each } i = 1, \dots, m \\ \bullet \text{ column sum } j \text{ is } c_j, \text{ for each } j = 1, \dots, n \end{array} \right\}$

- Partial sum transportation polytope

		 each partial row & column sum extending from each end of the row or column is nonnegative
$\mathcal{P}(r,c) := \langle$	$m \times n$ real matrices	• row sum <i>i</i> is r_i , for each $i = 1, \ldots, m$
		• column sum j is c_j , for each $j = 1, \ldots, n$

Previous results for \mathcal{B}_n and \mathcal{A}_n can be generalized

Integer Points of Dilates of \mathcal{B}_n and \mathcal{A}_n

For a nonnegative integer r:

• Semimagic squares

$$\mathsf{SMS}(n,r) := \left\{ n \times n \text{ integer matrices} \right|$$

= $\mathbb{Z}^{n^2} \cap (r\mathcal{B}^n)$

- each entry is nonnegative
- each complete row & column sum is $r \int$
- Generalized alternating sign matrices
 ASM(n,r) :=

 $\begin{cases} n \times n \text{ integer matrices} \\ n \times n \text{ integer matrices} \\ each end of the row or column is nonnegative} \\ each complete row & column sum is r \\ each complete row & column sum is r \\ \end{bmatrix} \\ = \mathbb{Z}^{n^2} \cap (r\mathcal{A}^n) \\ e.g. \begin{pmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix} \in SMS(4,3) \subset ASM(4,3) \\ \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 1 & -2 & 2 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix} \in ASM(5,2) \\ \end{cases}$

- {sums of $r \ n \times n$ permutation matrices} $\subset SMS(n,r)$, {sums of $r \ n \times n$ standard alternating sign matrices} $\subset ASM(n,r)$
- Reverse containments also, less trivially, valid

Cardinalities of SMS(n,r) and ASM(n,r)

SMS(n,r)	r = 0	1	2	3	4
n = 1	1	1	1	1	1
2	1	2	3	4	5
3	1	6	21	55	120
4	1	24	282	2008	10147
5	1	120	6210	153040	2224955
6	1	720	202410	20933840	1047649905
ASM(n,r)	r=0	1	2	3	4
$\frac{ ASM(n,r) }{n=1}$	r=0	1	2	3	4
$\frac{ ASM(n,r) }{n=1}$	$ \begin{array}{c c} r=0\\ 1\\ 1 \end{array} $	1 1 2	2 1 3	3 1 4	4 1 5
ASM(n,r) $n=1$ 2 3	$ \begin{array}{c} r=0\\ 1\\ 1\\ 1\\ 1 \end{array} $	1 1 2 7	2 1 3 26	3 1 4 70	4 1 5 155
ASM(n,r) $n=1$ 2 3 4	r=0	1 1 2 7 42	2 1 3 26 628	3 1 4 70 5102	4 1 5 155 28005
$ \frac{ ASM(n,r) }{n=1} \\ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \end{array} $	r=0	1 1 2 7 42 429	2 1 3 26 628 41784	3 1 4 70 5102 150712	4 1 5 155 28005 28226084

• n = 1: single 1×1 matrix (r)

•
$$n = 2$$
: $\begin{pmatrix} i & r-i \\ r-i & i \end{pmatrix}$ for $i = 0, 1, \dots, r$

• Ehrhart theory implies |SMS(n,r)| & |ASM(n,r)| for fixed n are polynomials in r

of the form
$$\sum_{k=n-1}^{(n-1)^2} c_{nk} \binom{r+k}{(n-1)^2}$$
, where c_{nk} are nonnegative integers.
e.g. $|SMS(3,r)| = \binom{r+2}{4} + \binom{r+3}{4} + \binom{r+4}{4}$
 $|ASM(3,r)| = \binom{r+2}{4} + 2\binom{r+3}{4} + \binom{r+4}{4}$
 $|SMS(4,r)| = \binom{r+3}{9} + 14\binom{r+4}{9} + 87\binom{r+5}{9} + 148\binom{r+6}{9} + 87\binom{r+7}{9} + 14\binom{r+8}{9} + \binom{r+9}{9}$
 $|ASM(4,r)| = 3\binom{r+3}{9} + 80\binom{r+4}{9} + 415\binom{r+5}{9} + 592\binom{r+6}{9} + 253\binom{r+7}{9} + 32\binom{r+8}{9} + \binom{r+9}{9}$

• Known formulae for fixed r:

|SMS(n,0)| = |ASM(n,0)| = 1 (single $n \times n$ zero matrix)

|SMS(n,1)| = n! (*n*×*n* permutation matrices)

 $|\mathsf{ASM}(n,1)| = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!} \quad (n \times n \text{ standard alternating sign matrices})$

$$|SMS(n,2)| = \sum_{i=0}^{n} \frac{(n!)^2 (2i)!}{2^{n+i} (i!)^2 (n-i)!}$$

$$|SMS(n,3)| = \sum_{\substack{\text{nonneg. integers}\\i,j,k \text{ with } i+j+k=n}} \frac{(n!)^2 (3i+j)!}{2^{2i+j} 3^{2i+k} (i!)^2 j! k!}$$

Higher Spin Vertex Models with Domain-Wall Boundary Conditions

Configuration of spin- $\frac{r}{2}$ vertex model on $n \times n$ grid with generalized DWBC: assignment of H_{ij} to horizontal edges and V_{ij} to vertical edges with

- $H_{ij}, V_{ij} \in \{-\frac{r}{2}, -\frac{r}{2}+1, \dots, \frac{r}{2}-1, \frac{r}{2}\}$
- $H_{i0} = V_{0j} = -\frac{r}{2}$ (left & upper boundaries)
- $H_{in} = V_{nj} = \frac{r}{2}$ (right & lower boundaries)
- $H_{i,j-1} + V_{ij} = V_{i-1,j} + H_{ij}$ ('ice condition')

 ASM(n,r) & {configurations of spin-^r/₂ vertex model on n×n grid with DWBC} are in bijection, with A ∈ ASM(n,r) & corresponding configuration (H,V) related by:

$$H_{ij} = -\frac{r}{2} + \sum_{j'=1}^{j} A_{ij'}, \quad V_{ij} = -\frac{r}{2} + \sum_{i'=1}^{i} A_{i'j}, \quad A_{ij} = H_{ij} - H_{i,j-1} = V_{ij} - V_{i-1,j}$$

Integrable Boltzmann weights can be assigned to vertex configurations.

For r = 1 can use integrable six-vertex model weights

$$w_{\lambda,z}\left(\stackrel{-\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}},\stackrel{-\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}}\right) = w_{\lambda,z}\left(\stackrel{\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}},\stackrel{\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}}\right) = \sin(z+\lambda), \quad w_{\lambda,z}\left(\stackrel{-\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}},\stackrel{-\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}}\right) = w_{\lambda,z}\left(\stackrel{-\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}},\stackrel{-\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}}\right) = \sin(z-\lambda),$$

$$w_{\lambda,z}\left(\stackrel{\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}},\stackrel{-\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}}\right) = w_{\lambda,z}\left(\stackrel{-\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}},\stackrel{-\frac{1}{2}}{\xrightarrow{-\frac{1}{2}}}\right) = \sin(2\lambda)$$

- z = spectral parameter $\lambda = crossing parameter$
- Yang-Baxter equation satisfied
- Related to spin- $\frac{1}{2}$, i.e. highest weight 1, irreducible representation of $sl(2,\mathbb{C})$
- Partition function with spectral parameter $x_i y_j$ at vertex (i, j) (for some $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$) given by Izergin-Korepin determinant

$$egin{aligned} Z(n,\lambda,x,y) &\equiv \sum_{\substack{ ext{configurations}\(H,V)}} \prod_{i,j=1}^n w_{\lambda,x_i-y_j} \Big(\overset{V_{i-1,j}}{\displaystyle \longmapsto} H_{ij} \Big) \ &= rac{\sin(2\lambda)^n \prod_{i,j=1}^n \sin(x_i-y_j-\lambda) \sin(x_i-y_j+\lambda)}{\prod_{1\leq i < j \leq n} \sin(x_i-y_j) \sin(y_j-y_i)} \ & \det_{1\leq i,j\leq n} \Big(rac{1}{\sin(x_i-y_j-\lambda) \sin(x_i-y_j+\lambda)} \Big) \end{aligned}$$

• Can be used in derivation of formula for |ASM(n,1)| (Kuperberg 1996)

Boltzmann weights for r > 1 obtained by applying *fusion* to r = 1 weights:

- $w_{r,\lambda,z}\left(h' \leftarrow \frac{1}{v} \cdot h\right)$ given in terms of $r \times r$ block of spin- $\frac{1}{2}$ weights with spectral parameter of (k,l) entry of block $= z + 2(l-k)\lambda$ and certain eigenvector entries P of fusion projectors applied at boundaries (Kulish, Reshetikhin, Sklyanin 1981)
- Also satisfy Yang-Baxter equation
- Related to spin- $\frac{r}{2}$, i.e. highest weight r, irreducible representation of $sl(2,\mathbb{C})$

which gives

Partition function for arbitrary r with spectral parameter $x_i - y_j$ at vertex (i, j) given in terms of certain $nr \times nr$ Izergin-Korepin determinant:

$$Z(n, r, \lambda, x, y) = \dots \det M(n, r, \lambda, x, y)$$

with $M(n, r, \lambda, x, y)_{(i,k),(j,l)} = \frac{1}{\sin(x_i - y_j + (2(l-k) - 1)\lambda) \sin(x_i - y_j + (2(l-k) + 1)\lambda)}$
 $i, j = 1, \dots, r; \quad k, l = 1, \dots, r$

(Caradoc, Foda, Kitanine 2006)

Sketch of derivation:

- $Z(n, r, \lambda, x, y)$ involves $n \times n$ block of $r \times r$ blocks of spin- $\frac{1}{2}$ weights
- Fusion projectors satisfy *push-through property* which allows all internal projector eigenvectors to be moved to boundaries, where they give spin- $\frac{1}{2}$ DWBC
- $Z(n, r, \lambda, x, y)$ is then proportional to spin- $\frac{1}{2}$ partition function on $nr \times nr$ grid with DWBC and certain spectral parameter assignments

Generalized Osculating Path Collections

(n,r) osculating path collection: nr noncrossing paths on $n \times n$ grid for which

- r paths begin/end at each point in last row/column
- only unit upward & rightward steps allowed
- at most r paths pass along any edge

ASM(n,r) & {(n,r) osculating path collections} are in bijection, with corresponding $A \in ASM(n,r)$ & path collection related by:

(# paths on horizontal edge between (i,j) & (i,j+1)) = $\sum_{i'=1}^{j} A_{ij'}$ (# paths on vertical edge between (i,j) & (i+1,j)) = $\sum_{i'=1}^{j} A_{i'j}$

e.g.

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 1 & -2 & 2 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix} \in \mathsf{ASM}(5,2) \quad \longleftrightarrow$$

• Separability of paths implies any matrix in ASM(n,r) is a (not necessarily unique) sum of r standard $n \times n$ alternating sign matrices

gives

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 1 & -2 & 2 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Generalized Fully Packed Loop Configurations

(n,r) fully packed loop configuration:

Collection of noncrossing paths on $n\!\times\!n$ grid for which

- numbers of path endpoints are alternately 0 & r along boundaries
- only unit upward, downward, leftward & rightward steps allowed
- exactly r path segments pass through each internal vertex

Surjection from fully packed loop configuration to $A \in \mathsf{ASM}(n,r)$ given by

 $\begin{pmatrix} \sum_{j'=1}^{j} A_{ij'}, i+j \text{ odd,} \\ \sum_{j'=j+1}^{n} A_{ij'}, i+j \text{ even} \end{pmatrix} = (\# \text{ segments on edge between } (i,j) \& (i,j+1))$ $\begin{pmatrix} \sum_{i'=i+1}^{n} A_{i'j}, i+j \text{ odd,} \\ \sum_{i'=1}^{i} A_{i'i}, i+j \text{ even} \end{pmatrix} = (\# \text{ segments on edge between } (i,j) \& (i+1,j))$ e.g. $\longrightarrow \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 1 & -2 & 2 \\ 1 & 0 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 & 0 \end{pmatrix} \in \mathsf{ASM}(5,2)$

- For r ≥ 2, several fully packed loop configurations can map to same matrix, since particular numbers of paths on edges can have several connections at vertices
 e.g. for r = 2, 1 → 1 → 1 can connect as → or →
 Therefore, # (n,r) fully packed loop configurations = weighted sum over ASM(n,r)
- Higher spin link patterns and integrable loop models studied by Zinn-Justin 2007

Summary

- The alternating sign matrix polytope A_n naturally extends the Birkhoff polytope.
 - The faces of A_n correspond to certain spanning subgraphs of an $n \times n$ grid-type graph.
 - The vertices of A_n are all $n \times n$ alternating sign matrices.
- The set ASM(n,r) of integer points of the *r*-th dilate of A_n is in bijection with the set of configurations of spin- $\frac{r}{2}$ integrable vertex models on an $n \times n$ grid with generalized domain-wall boundary conditions.
 - The partition function of these models can be expressed as an Izergin–Korepintype determinant.
 - There is also a bijection between certain osculating path collections and ASM(n,r), and a surjection from certain fully packed loop configurations to ASM(n,r).