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Thesis advisors AuthorDr Yuesuo Yang and Professor Tim Phillips Luca TraversoAbstractTwo research areas have received signi�cant attention from the groundwater modellingcommunity in recent years.Firstly, the need for numerical techniques that are capable of generating accurategroundwater �uxes has been recognized in several groundwater related applications.The traditional approach is based on the solution of a second order problem whichonly provides an approximation for the potential. This is subsequently post-processedto derive an approximation of the groundwater �uxes. However, these approximationsof the �uxes tend to be inaccurate. Mixed �nite element methods (MFEM), basedon the approximation of a �rst order problem, have emerged as a suitable alternativeto the traditional approach since they provide accurate approximations for both thepotential and the groundwater �uxes. However, the discrete linear systems obtainedusing mixed methods is inde�nite and its solution is generally considered a source ofproblems. A variation of standard mixed methods enables the inde�nite system tobe transformed into a positive de�nite one for which standard iterative solvers can beused. In this thesis a comparison of the computational cost incurred in solving theinde�nite and positive de�nite systems is presented. It is shown that the success ofone method over the other is largely dependent on the choice of preconditioner usedwithin the iterative scheme. Further evidence is provided which demonstrates that theSchur complement preconditioner proposed by Powell (2003) and Powell & Silvester(2003) for the inde�nite system is robust and optimal for a class of conductivitycoe�cients often encountered in groundwater modelling applications.Secondly, we provide an assessment of numerical methods for describing modeluncertainty. This �eld of research has developed incredibly fast in the last decadeii



Abstract iiiwith new advances being continuously proposed. In the context of groundwater mod-elling, uncertainty arises predominantly from scarce and erroneous knowledge of thehydraulic parameters of an aquifer. In a probabilistic framework these coe�cientsare modelled as spatial random �elds and the deterministic partial di�erential equa-tions (studied in the �rst part of the thesis) become stochastic in nature. In thisthesis we study recently proposed methodologies to tackle uncertainty quanti�cation.These belong to the large family of Stochastic Galerkin methods which use poly-nomial chaos expansions for the unknown solution. The conductivity coe�cient isapproximated by means of Karhunen-Loéve expansion (KLE) or by polynomial chaosexpansion. The slow decay of the eigenvalues of the KLE for random �elds with smallcorrelation lengths poses a signi�cant limitation to the applicability of this methodsince, in these circumstances, a large number of terms in the expansion (randomvariables) are required to attain reasonable accuracy. We show that this limitationcan be overcome through a decomposition of the physical domain into regions whosesizes correspond approximately to the correlation lengths of the material parameters.This approach allows the deployment of expansions using a limited number of ran-dom variables. In this thesis we explore solution strategies for stochastic Galerkinmethods. The characteristic structure of the discrete linear systems obtained whenthe underlying Galerkin method is either the Finite Element Method (FEM) or themixed �nite element method is described. The performance of iterative solvers pre-conditioned with traditional mean-based preconditioners is studied and it is shownthat their performance deteriorates signi�cantly for random �elds characterized bylarge variances. For the stochastic primal formulation an alternative preconditionerbased on a block symmetric Gauss-Seidel scheme is proposed and it is shown that itoutperforms mean-based preconditioners for all settings considered in this work.Our work concludes with the development of a numerical model for a real case



Abstract ivstudy in the United Kingdom. A calibrated deterministic model for the site is de-veloped using FEM and MFEM and then the calibrated model is used to obtain aprobabilistic representation of the conductivity �eld. Thus stochastic technologies aredeployed to quantify model uncertainty for the site. The reported case study is one ofthe �rst examples of formal characterization of model uncertainty for an actual site.
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Chapter 1
Introduction

Groundwater models have, in recent decades, emerged as important tools usedextensively by policy-makers and stakeholders in the sustainable management of wa-ter resources. Environmental regulators across the globe have adopted groundwatermodels to improve and support their decision-making. The United Kingdom (UK)has been at the forefront of these e�orts. By 2006 the Environment Agency of Eng-land and Wales had sponsored the development of 34 catchment size groundwatermodels which altogether cover most of the major and some minor aquifers in thecountry (Van Wonderon & Wilson 2006).Many processes in the physical sciences are mathematically described by partialdi�erential equations (PDE). The movement of water in a porous medium is one ofthose processes. In fact, the combination of Darcy's Law and conservation of massgives a second order partial di�erential equation. Provided that suitable boundaryconditions are speci�ed, its solution allows for the prediction of pressure and velocitieseverywhere in the physical domain under investigation. Generally, simple problemsconstituted by simple geometries and parameters admit analytical solutions. However,most often the modelling e�ort involves complex three-dimensional geometries and1



Chapter 1: Introduction 2spatially varying parameter sets. In those circumstances analytical solutions are notavailable and one has to rely on numerical methods to obtain approximations for thequantities of interest.Depending on the characteristics of the parameter datasets, boundary conditionsand source / sink terms, numerical models can be either deterministic or stochas-tic. In the former case parameters, such as hydraulic conductivity are deemed tobe known with certainty everywhere in the model domain. In the latter case it isrecognized that such detailed knowledge is not available, thus the system parametersare described in probabilistic manner. In this thesis we investigate both modellingapproaches. The deterministic approach is largely established and by far the mostwidely used in applications. Thus we deal with a specialised sub�eld - accurate ap-proximation of groundwater �uxes by mixed �nite element methods - in that areawhich has, however, signi�cant relevance in speci�c groundwater modelling contexts.The stochastic approach has received extensive attention in the last decade due tothe emergence of novel technologies. Therefore we investigate one of these technicaladvancements - stochastic Galerkin methods for uncertainty quanti�cation - in a moreholistic manner.Mixed and Hybrid Finite Elements: A Computational ComparisonSince numerical methods are not exact and they only provide an approximation ofthe actual solution, the research community has extensively focused on how to improvenumerical model solutions. The accurate approximation of groundwater �uxes bysophisticated �nite element methods represents an example of such achievements.Groundwater �uxes are often the variable of primary interest and their accurateevaluation is of crucial importance in many applications. As an example, the caseof nuclear waste disposal can be considered. In this context groundwater velocities



Chapter 1: Introduction 3or �uxes are critical in determining the likely pathways and timings of radionuclidesthrough the geological deposits, should they escape from the repository in which theyare contained. Considering that the UK Government is aiming at nuclear energyas the primary source of its future energy supply and that geological disposal is thepreferred option for dealing with nuclear waste, the research involved in predicting thefate of radionuclide dispersion in the underground is destined to increase signi�cantlyin the future.Numerical methods that provide simultaneous accurate approximations of ground-water velocities and pressure head are available. Mixed Finite Element methods(MFEM) (Brezzi & Fortin 1991) were introduced in the early nineties and have beenstudied extensively in the last two decades. In the mixed formulation the coupledsystem of equations given by Darcy's Law and the conservation of mass is solved.This is di�erent from the conventional approach where a single partial di�erentialequation is solved for the pressure head and its post-processing gives the velocitysolution. In the mixed approach, the velocity variable is de�ned explicitly by speci�cvectorial basis functions, thus no further post-processing is required. Importantlycontinuity conditions on the �uxes are imposed at the element level, thus makingthe method locally conservative and particularly suited for highly heterogeneous anddiscontinuous conductivity coe�cients.The fact that velocity approximations obtained using MFEM are superior to thoseobtained using traditional numerical methods has long been recognized and theoret-ical and discrete error estimates have mathematically proven it. However, it appearsthat the groundwater modelling community is generally unaware of locally conserva-tive methods and instead software based on traditional numerical schemes are usedfor those applications (e.g. nuclear waste disposal) for which they are neither bestsuited nor recommended.



Chapter 1: Introduction 4One of the reasons why MFEM have not gained the popularity that other methodshave, is related to the fact that the associated discrete linear systems are inde�niteand therefore generally more di�cult to solve than symmetric positive de�nite (SPD)systems (generally obtained with traditional methods). Inde�nite systems are con-sidered problematic, making researchers to investigate ways to convert the inde�nitesystems to SPD ones. A popular approach is the hybridization method (Arnold &Brezzi 1985, Brezzi & Fortin 1991), also known as the Mixed Hybrid Finite ElementMethod (MHFEM).Several authors (Younes & Fontaine 2008b,a) have compared the computationalperformance of various vectorial �nite element schemes, but generally the hybridversion is considered in these studies. The original mixed method is discarded asthe solution of a saddle-point system is considered, in principle, computationallytoo expensive and because the system of equations generated is larger than the oneobtained with the hybrid method. However, there are several aspects that determinethe computational cost of an iterative solver. The size of the system of equations iscertainly one. Nevertheless, it would be super�cial to discard one method based onlyon that criterion. In fact, considerations of the properties of the system of equationsare equally important. The condition number, for example, gives an indication ofthe magnitude of change in the solution of a problem given small changes to modelinput parameters. Thus the condition number is in�uenced by several factors suchas the size of the computational domain and more importantly the characteristics ofthe conductivity coe�cient. If a system is ill-conditioned (large condition number),the iterative solver chosen for a speci�c problem is likely to perform poorly. Inthose cases its performance can be improved signi�cantly, for example, by using apreconditioner. Therefore the number of unknowns is not a su�cient condition todetermine if a method is more or less computationally expensive than another. In



Chapter 1: Introduction 5fact, a large system of equations can require a small number of solver iterations (andtherefore computational cost) if an e�cient preconditioner exists. Equally a smallsystem of equations can require a large number of solver iterations if the conditionnumber is large and an e�ective preconditioner is unavailable.Following this discussion it is apparent that further investigation is required.Therefore, this thesis seeks to answer the following question for non-stochastic prob-lems: under which circumstances is solving the inde�nite system computationallymore expensive than solving the positive de�nite system obtained with the hybridapproach?In order to successfully answer this question, we consider iterative schemes equippedwith state of the art preconditioners. The analysis includes test problems with vari-ous levels of mesh re�nement, structured / unstructured meshes and heterogeneous,anisotropic and discontinuous conductivity coe�cients. Each of the test problemsconsidered possesses an analytical solution, and discrete error estimates are also in-cluded in the analysis.The codes developed to carry out the numerical experiments associated with thisanalysis have all been developed within the MATLAB environment and the computa-tions are all performed in serial. The development of the same algorithms in a parallelarchitecture is matter for future work and development.Stochastic Galerkin Methods for Uncertainty Quanti�cation in Ground-water Flow ProblemsThe second part of this thesis is dedicated to the fascinating research area of un-certainty quanti�cation (UQ). This topic has received signi�cant attention in the lastten years as its relevance spans a variety of research areas of numerical analysis. Thereviews by Najm (2009) and Le Maître & Knio (2010), for example, give an excellent



Chapter 1: Introduction 6overview of uncertainty quanti�cation in computational �uid dynamics. Sudret &Der Kiureghian (2000) summarise the strengths and weaknesses of various method-ologies with application to elasticity problems. An overview of innovative methodsfor uncertainty quanti�cation in several areas of engineering and physical sciences isgiven by Stafanou (2009).Deterministic models assume that coe�cients, such as hydraulic conductivity ortransmissivity and boundary conditions and source / sink terms are known with cer-tainty in the physical domain. Unfortunately, this is never the case, for data used bynumerical models are ordinarily uncertain. In fact, observed data are generally scarceand this leads to extrapolation to larger scales (often of the size of the computationaldomain) which is intrinsically uncertain. The lack of knowledge of the system param-eters requires that uncertainties are quanti�ed in a proper and satisfactory manner.When the variables and coe�cients of the groundwater �ow equations are rep-resented by random variables or random �elds, the deterministic groundwater �owequations which are considered in the �rst part of this thesis become stochastic innature. The e�cient solution of stochastic PDE's (SPDE) poses a serious challenge asthe number of equations which are solved are generally of several orders of magnitudelarger than in deterministic problems. It becomes apparent that when uncertaintyquanti�cation is required for problems which are very large in nature (such as cli-mate, ocean, reservoir or mantle models) the computational cost to carry out thattask becomes prohibitively large.Stochastic modelling of groundwater �ow has been traditionally associated withMonte Carlo methods (MCM). This approach is straightforward for it involves theimplementation of a large number of sequential deterministic simulations from whichstatistics of the numerical solutions can be derived. It is clear that the conclusionsdrawn in the �rst part of the thesis have immediate relevance to MCM, for their



Chapter 1: Introduction 7(computational) performance is directly proportional to the computational cost ofsolving the individual deterministic system.However, traditional MCM are computationally expensive for a large number ofsimulations is generally required to compute meaningful statistics. This has led theresearch community to investigate alternative, faster converging methods or ways toaccelerate the slow convergence of MCM. The latter research direction has resulted inthe development of Multilevel Monte Carlo and Quasi-Monte Carlo methods whichare giving very promising results (Cli�e et al. 2011, Graham et al. 2011). Thesemethods are particularly suitable for those applications in which the stochastic be-haviour requires a large number of degrees of freedom in probability space to be fullydescribed. Situations of this kind are encountered in problems with rough coe�cients(i.e spatial random �elds with large variance and / or small correlation lengths). Insuch applications other methods such as Stochastic Finite Element method (SFEM)or Stochastic Galerkin method (SG) (Ghanem & Spanos 2003) and Stochastic Collo-cation method (SC) (Babu²ka et al. 2007) su�er from what is generally called `curseof dimensionality' whereby the computational cost grows rapidly (factorially) withthe dimension of the stochastic space.Although this limitation of SFEM or SG is generally recognized, they continueto be widely used in engineering applications. In fact, in this thesis we aim to showthat these methods can be successfully used in the context of groundwater modelling.Several studies have already reported work of various kinds in this speci�c area. How-ever these are generally mathematical and somewhat technical. Often the examplesused are `toy' problems whose usefulness is restricted to the numerical analysis con-text. Therefore, we aim to apply these techniques to the Cardi� Bay case study andgive one of the �rst examples of formal uncertainty quanti�cation in a real-life situ-ation. To achieve this, we assume that the highly heterogeneous conductivity �eld



Chapter 1: Introduction 8can be decomposed into sub-domains in which the material parameter has a quasi-homogeneous behaviour. This assumption which is perfectly justi�able and in linewith approaches generally undertaken in applications, allows us to reduce the numberof random variables required to approximate the conductivity �eld.There are several ways material parameters can be described in a probabilisticmanner. Generally, Gaussian, uniform or lognormal random variables are used forthis scope. In the case of SFEM / SG methods the linear systems obtained from thevariational formulation are signi�cantly di�erent depending on the distribution usedto characterise the uncertain parameter/s. Thus if Gaussian and uniform distribu-tions (`stochastically linear case') are employed the structure of the discrete systemis considerably di�erent from the case in which lognormal distributions are employed(`stochastically non-linear case'). In this thesis numerical analysis based on both casesis reported.To be able to achieve our objective, which is the e�ective and e�cient implementa-tion of Stochastic Galerkin methods in groundwater modelling applications, there areseveral challenges which need to be overcome. First, given that the obtained discretelinear system of equations is of several orders of magnitude larger than its deter-ministic counterpart, the memory requirements for assembling such a large systempose serious challenges. However, as will be shown, this limitation can be overcomefollowing the pioneering work of Ghanem & Kruger (1996).Second, the system of equations has to be solved e�ciently. We can build from ourexpertise with deterministic solvers investigated in the �rst part of the thesis. How-ever, the stochastic Galerkin systems, in both stochastically linear and non-linearcases, are ill-conditioned with respect to the mesh size and the parameters de�ningthe conductivity �eld. Thus, to e�ectively tackle the solution of such systems, precon-ditioners are required. A popular choice, which has been extensively exploited in the



Chapter 1: Introduction 9past, is the so called `mean based preconditioner'. We assess its performance for a setof test problems, highlight the weaknesses and propose an alternative preconditionerfor these challenging problems.The code implementation of Stochastic Galerkin methods associated with the per-formance analysis presented in this thesis have all been developed within the MAT-LAB environment and in serial. The development of the same algorithms in a parallelarchitecture is matter for future work and development.Structure of the ThesisThe aim of this work is to analyse numerical methods for groundwater modelling,with special emphasis on �nite elements, as these evolve from deterministic to stochas-tic formulation. Therefore the dissertation is structured around those two themes.Building on the extensive literature about classical FEM in the �rst part of the thesiswe start our investigation with the mixed �nite element method and report a com-parison of computational performance between the classical MFEM and the hybridapproach. Considering the relative novelty of the stochastic approach, in the secondpart of the thesis we primarily focus on SFEM and advance subsequently to Stochas-tic Mixed Finite Element Method (SMFEM) which is currently an actively evolving�eld of research. A thorough comparison of solvers' performance is reported for bothstochastic methods. The thesis concludes with an application of these methods tothe Cardi� Bay case study, thus providing one of the �rst examples of the utilisationof stochastic technologies in a real-life scenario.Following this general logic in Chapter 2 the theory of the mixed �nite elementmethod is presented. The derivation of the discrete linear system and the exten-sion to the hybrid approach are described. Solution strategies for both methods arepresented with particular emphasis on the state of art solvers currently available in



Chapter 1: Introduction 10the literature. Chapter 3 reports numerical experiments on the computational costof solving the linear systems obtained by MFEM and MHFEM. The analysis is per-formed on structured / unstructured triangular and rectangular elements and forheterogeneous, anisotropic and discontinuous conductivity coe�cients. MFEM dis-crete error estimates are reported for each test problem. Chapter 4 describes thetheory of stochastic Galerkin methods for the stochastically linear case. The struc-ture and properties of the the discrete linear systems for SFEM, SMFEM and thehybrid version of SMFEM are studied in depth. Existing solution strategies and in-novative approaches are presented. The validation of SFEM and SMFEM againsttraditional MCM for a pair of test problems is given in Chapter 5. This chapter onlyserves as validation for SG methods and it is not intended to give a formal compu-tational comparison between MCM and SG methods. Numerical experiments for thestochastically linear case are reported in Chapter 6. The �rst part of the chapterdeals with SFEM and the second part with the SMFEM. Various solvers are testedand compared and the chapter ends with concluding remarks on which one is themost robust and computationally e�cient. Chapter 7 follows the structure of theprevious chapter, but considers the stochastically non-linear case. The �rst part ofthe chapter describes the derivation of the global linear system as this di�ers substan-tially from the linear case. Chapter 8 discusses the Cardi� Bay case study. The �rstpart of the chapter outlines the conceptual model for the site and the second partshows the numerical simulations. Both deterministic �nite element and mixed �niteelement simulations are included, as well as their stochastic counterparts. The thesisconcludes with Chapter 9 which summarises the �ndings of this work, highlights theunanswered questions and outlines possible directions of future research.



Chapter 2
Mixed and Hybrid Finite ElementTheory
2.1 IntroductionThe importance of accurate approximation of �uxes in groundwater modellinghas been at the heart of debates in this �eld for the last two decades. Accuratecomputation of the �uxes is important not only when the computed �ow solutionis used to solve the contaminant transport equations, but also when accurate waterbalances are required for the problem at hand. The �nite element method (FEM),the �nite di�erence method (FDM) and the �nite volume method (FVM) are themost widely used numerical techniques for the approximation of groundwater �uxes.These numerical methods, �rst solve for the potential and then obtain the �ux bynumerical di�erentiation using Darcy's Law. A review of di�erent Darcian post-processing methods is given by Goode (1990), Cordes & Kinzelbach (1992), Srivastava& Brusseau (1995), Dogrul & Kadir (2006). Whilst post-processing techniques mightbe suitable for problems with relatively homogeneous hydraulic conductivity, they11



Chapter 2: Mixed and Hybrid Finite Element Theory 12are not appropriate for heterogeneous aquifers (Kaasschieter & Huijben 1992, Moséet al. 1994). They are particularly prone to error when the hydraulic conductivitycoe�cient is discontinuous with large contrasts in di�erent regions of the problemdomain.Mixed �nite element methods (MFEM) (Arnold & Brezzi 1985, Brezzi & Fortin1991) represent an alternative to traditional numerical schemes which allow the accu-rate simultaneous approximation of potential and groundwater �uxes. Mixed methodsare based on the choice of vectorial basis functions as a suitable approximation spacefor the normal components of �uxes across each �nite element edge or face. Addi-tionally, scalar basis functions, which are element-wise constant, are chosen for theapproximation of the potential. Mixed methods have the important advantages ofbeing locally conservative and of enforcing continuity on the normal components ofthe �uxes at the �nite element boundaries.Groundwater �uxes obtained by mixed methods are generally more accurate thanthose obtained through Darcian post-processing and this has been demonstrated byseveral authors (see Durlofsky (1994), Kaasschieter (1995) for example). This isachieved at the expense of larger computational cost, simply because the number ofdegrees of freedom in the mixed formulation is larger than traditional methods. Infact, using the mixed method the number of unknowns corresponds to the sum ofthe number of elements and edges in which the physical domain has been discretized.Conversely in traditional methods the number of unknowns corresponds to either thenumber of element or nodes (FDM / FVM and FEM, respectively). This importantdrawback was one of the arguments used against mixed methods in the early worksof Cordes & Kinzelbach (1992), Srivastava & Brusseau (1995).Additionally, the discrete linear system obtained using the mixed formulation isinde�nite and therefore, generally, not easy to solve. This issue was resolved by



Chapter 2: Mixed and Hybrid Finite Element Theory 13augmenting the discrete linear system by means of Lagrange multipliers, resultingin what is known as the mixed-hybrid �nite element method (MHFEM) (Brezzi &Fortin 1991). The discrete linear system obtained by MHFEM is symmetric positivede�nite (SPD) and therefore can be easily solved using the conjugate gradient (CG)method. Furthermore, the size of the system of equations is reduced (to the numberof edges) as the pressure and velocity unknowns are algebraically eliminated. Hence,just based on the size of the discrete linear system, the MHFEM is computationallyless expensive than MFEM but still more costly than traditional methods.Obviously, nowadays the computational cost is less of a problem than it was twentyyears ago. In fact problems of the order of 106 degrees of freedom can be easily solvedon standard dual-core laptop PC with 4GB of RAM (see Chapter 3). Larger prob-lems of the order of 107 - 108 unknowns require, in general, parallel computationsindependent of the method used for the approximation. Examples of parallel com-putation of groundwater �ow in heterogeneous media can be found in Cli�e et al.(2000), de Dreuzy et al. (2007). If any existed, the concerns about CPU cost andtime e�ciency for the mixed methods have been overcome. Furthermore, consideringthat mixed methods provide a very accurate velocity solution and that this is of criti-cal importance in many practical applications, the additional computational expenserequired to solve the linear systems obtained by mixed methods seems to be justi�ed.Although some of the limitations of mixed methods have been resolved, it is a mat-ter of fact that these methods have not been frequently used in real-life applicationsand are not part of popular computer software such as MODFLOW (Harbaugh & Mc-Donald 1996, Harbaugh et al. 2000) and FEFLOW (Diersch 1996), extensively usedin the groundwater modelling community. In fact, the issue of accurate groundwater�uxes and locally conservative numerical methods is arguably unknown to practition-ers who tend to develop groundwater models based on the approximation techniques



Chapter 2: Mixed and Hybrid Finite Element Theory 14deployed by commercially available softwares (generally FDM, FEM and FVM).To the author's knowledge, it appears that a publicly available computer program(for groundwater modelling applications) based on mixed methods has not yet beendeveloped. The programming codes currently existing such as PIFISS (Silvester &Powell 2007) or the MATLAB (MATLAB 1997) scripts of Bahriawati & Carstensen(2005) are a useful starting point and of great research interest. However they are farfrom being tools usable in applications. On the other hand, the mathematical theoryunderpinning the mixed formulation is well-developed and mature (see Raviart &Thomas (1977), Nedelec (1980), Arnold & Brezzi (1985), Chavent & Ja�ré (1986),Roberts & Thomas (1991), Chavent & Roberts (1991), Brezzi & Fortin (1991), forexample). Therefore, there exists a gap between the theory and the application.In addition to mixed methods there are several other numerical techniques thatare locally conservative and provide accurate approximations for the (groundwater)�uxes. A review of some of these techniques is given by Klausen & Russell (2004). Theauthors look at the relationship between traditional MFEM, control-volume mixed�nite element method (CVMFEM) (Cai et al. 1997), enhanced cell-centered �nitedi�erence method (ECCFDM) (Arbogast et al. 1997, 1998) and multi-point �ux ap-proximation (MPFA) (Edwards & Rogers 1998, Aavatsmark, T., Bøe & Mannseth1998a,b, Aavatsmark, T. & Mannseth 1998, Edwards 2002, Aavatsmark 2002, Ed-wards & Pal 2008, Edwards & Zheng 2008, Friis et al. 2008, Edwards & Zheng 2010,2011). The study of locally conservative numerical methods is a very active area ofresearch (see Edwards (2002) and all articles therein) and it is outside the scope ofthis chapter to review all the work which has been carried out on the subject.Error and convergence analysis for the lowest order Raviart-Thomas (RT0) mixed�nite element method is well established (see Brezzi & Fortin (1991), Arbogast et al.(1996), Demlow (2002), Radu et al. (2004), for example). Similar papers are available



Chapter 2: Mixed and Hybrid Finite Element Theory 15for the MPFA method (Klausen & Winther 2006b,a, Klausen et al. 2008). Bauseet al. (2010) compared the quality of the �ux approximations of the two methodsand showed that although the MFEM is slightly superior to MPFA, generally the twomethods are qualitatively very similar. Crucially however, for MFEM approximations(RT0 or Brezzi-Douglas-Marini BDM1 (Brezzi et al. 1985)) existence and uniquenessof the discrete solution is guaranteed for any mesh (triangular type was consideredin the paper) and di�usion full-tensor. The same has not yet been proven for MPFAmethods on unstructured grids (Remark 3.1, Bause et al. (2010)). Existence anduniqueness on cell centred triangles is reported in Friis et al. (2008).Similar studies have focused not only on error estimates for MFEM and MPFAbut also on their computational cost. It should be said that the majority of theresearch focuses on the computational comparison of the hybrid version of the MFEM(the SPD version) with other techniques (see for example Kaasschieter & Huijben(1992), Younes et al. (1999), Younes & Fontaine (2008b,a)). Several studies havetried to link mixed formulations with standard �nite volume methods with the aimof reducing the number of unknowns of MFEM (see Edwards (2002), Chavent et al.(2003), Younes et al. (2004), Brezzi et al. (2004), Edwards & Pal (2008), for example).Similarly, the link between MPFA and mixed methods is given in Vohralik (2006),Klausen & Russell (2004), Wheeler & Yotov (2006), Younes & Fontaine (2008b,a).The e�ort made in the last ten years or so to produce a numerical method whichwould give piecewise constant approximations for the pressure in each �nite elementand pressure dependent expressions for the �uxes has produced a large number ofdi�erent numerical schemes.In contrast, studies on the classical MFEM for which the associated discrete linearsystem is inde�nite are signi�cantly, less common (than the SPD version) and repre-sent a somewhat specialist area of research. The saddle-point problem obtained from



Chapter 2: Mixed and Hybrid Finite Element Theory 16the mixed formulation can be solved using the minimal residual method (MINRES)(Paige & Saunders 1975). If MINRES is preconditioned with e�cient symmetric pre-conditioners then the solution of the symmetric inde�nite system can be very e�cient(see Rusten & Wither (1992), Vassilevski & Lazarov (1996), Powell (2003), Powell &Silvester (2003), Powell (2005)). Of course, for MINRES to be competitive the choiceof preconditioner is crucial.It is clear that the essential prerequisites for the numerical methods used in thiswork are:
• Locally conservative (at the �nite element level);
• Accurate in the computation of �uxes;
• Robust with respect to heterogeneous and discontinuous conductivity coe�-cient;
• Ideally also robust with respect to anisotropic conductivity coe�cients as re-cently achieved with MPFA methods (Edwards & Zheng 2008, 2010, 2011).It is equally clear that there are several methods that satisfy these conditionssome of which have been mentioned in the previous section. However, it should bekept in mind that the main objective of this thesis is to study stochastic Galerkin(SG) methods and, as we will show in Chapter 4, these build from the approximationmethod used for deterministic problems. Therefore the choice of numerical methodsto use in our (deterministic) work is intrinsically linked with the requirements of SGmethods.In methods such as MPFA, CVMFEM and ECCFDM the �uxes are obtainedthrough explicit expressions which are functions of the pressure. The MFEM doesnot have such explicit expressions. Although the explicit representation of the �uxes



Chapter 2: Mixed and Hybrid Finite Element Theory 17can be advantageous, for example in the �eld of multiphase �ow (Klausen & Russell2004), it is not entirely certain that such a representation is possible in a stochasticframework. To the author's knowledge most of the work in the �eld of SG methodshas used FDM, FEM and MFEM approximations for the deterministic operator. Anextensive review of SG methods is given in Chapter 4, �4.1.Given the aforementioned motivations, in this thesis we are concerned with classi-cal MFEM formulations. In this chapter we review the theory of the MFEM includingthe hybrid formulation. This is standard material and extensive references have beenprovided throughout this introduction. A review of solution strategies for these meth-ods is given in �2.5.3 and �2.6.1, respectively. Chapter 3 compares the computationale�ciency of MFEM and MHFEM for a range of numerical examples. For the MFEM(inde�nite case) we use practical preconditioners proposed in Powell (2003), Pow-ell & Silvester (2003). For the MFEM (SPD case) we use an approximation of thecoe�cient matrix as a preconditioner for CG. The analysis includes test problemswith full-tensor, anisotropic coe�cients on structured and unstructured triangular /quadrilateral meshes.2.2 The mathematical modelThe steady-state �ow of water in porous media is described by a scalar second-order partial di�erential equation, the solution of which, when supplemented withsuitable boundary conditions, gives the distribution of a scalar potential u (potentialhead) over a speci�c domain, D. Let D be a domain in R
d, d = 2, 3, boundedby Γ = ΓD ∪ ΓN , where ΓD and ΓN denote the portion of Γ where Dirichlet andNeumann boundary conditions are prescribed, respectively. We seek a solution (u)
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−∇ · C∇u = f(x) in D, (2.1a)

u = g(x) on ΓD, (2.1b)
C∇u · n = 0 on ΓN , (2.1c)where C is a d × d symmetric positive de�nite coe�cient tensor representing thehydraulic conductivity speci�c to the problem at hand, n denotes the unit outwardnormal vector to ΓN and g(x) represents the prescribed constant head on ΓD. f(x)represents a sink or source term.Traditionally, �nite di�erence or �nite element methods are used to discretiseproblem (2.1). In such methods it is common to post-process the approximation tothe potential, u, to obtain the �uid discharge (�ux) or velocity, q, according to Darcy'sLaw. Whilst this is commonly done, many authors have shown that the computed�uxes are not accurate due to errors introduced by numerical di�erentiation (see Moséet al. (1994) and Kaasschieter & Huijben (1992), for example).Very often, in applications, q is the variable of primary interest. Hence, a nu-merical scheme which guarantees an accurate approximation of the �uxes is required.This can be achieved re-stating problem (2.1) by explicitly introducing Darcy's Law.We now seek the simultaneous solution (q, u) to the coupled �rst-order problem

C−1q−∇u = 0 in D, (2.2a)
∇ · q = −f(x) in D, (2.2b)

u = g(x) on ΓD, (2.2c)
q · n = 0 on ΓN . (2.2d)The solution of problem (2.2) using mixed �nite element methods allow us to obtaina simultaneous approximation for the potential and the �ux everywhere in D.



Chapter 2: Mixed and Hybrid Finite Element Theory 19In the next section an outline of the mixed �nite element theory is given, which,although somewhat technical, is needed for a complete presentation of the subject.2.3 Preliminary De�nitionsThe notions reported in this section are standard and well accepted de�nitionsand follow the rigorous analysis originally reported in Brezzi & Fortin (1991) andsubsequent works such as in Powell (2003). These de�nitions, although available inthose references, are included in this thesis as they form the basis of our analysis andderivation of the weak formulation for the �rst order problem (2.2).Let D be a bounded and connected domain in R
D, D = 2, 3, with Lipschitzcontinuous boundary Γ = ΓD ∪ ΓN .De�ne the Lebesgue space L2(D) of scalar square integrable functions over D,

L2(D) = {w : w is de�ned on D and ∫
D

w2dD <∞}. (2.3)
L2(D) is a Hilbert space with the inner product

(w, s) =

∫

D

ws dD,and associated norm
‖w‖L2(D) =

(
∫

D

w2dD

)
1

2

= (w,w)
1

2 . (2.4)Similarly, for vector functions v = (v1, . . . , vd)
T , we de�ne the Lebesgue space,

L2(D)d, of vectorial square integrable functions over D,
L2(D)d = {v : vi ∈ L2(D), i = 1, . . . , d}. (2.5)

L2(D)d is a Hilbert space with the inner product,
(v,u) =

∫

D

v · u dD =

d
∑

i=1

∫

D

viuidD,
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‖v‖L2(D)d =

(
∫

D

v2dD

) 1

2

= (v,v)
1

2 . (2.6)In order to derive the weak variational formulation of problem (2.2), we need tode�ne the following Sobolev space
H1(D) = {w : w ∈ L2(D) and ∂w

∂xi
∈ L2(D), i = 1, . . . , d}. (2.7)This is a Hilbert space with inner product,

(w, s) =

∫

D

(ws+∇w · ∇s) dD,and associated norm,
‖w‖H1(D) =

(
∫

D

w2 + |∇w|2 dD
)

1

2

. (2.8)A well known subspace of H1(D) is the subspace H1
0 (D) of functions that vanishat the boundary Γ of D,

H1
0(D) = {w ∈ H1(D) : w = 0 on Γ}. (2.9)Functions belonging to H1
0 (D) satisfy the Poincaré-Friedrich's inequality (see Braess(1992) for de�nition and proof), thus ensuring uniqueness of the solution. The set offunctions vanishing on the Dirichlet portion of Γ belong to the Hilbert space

H1
0,D(D) = {w ∈ H1(D) : w = 0 on ΓD}. (2.10)The following Hilbert spaces are required for the mixed variational formulationof problem (2.2). De�ne the space H(div ;D) of square-integrable vectorial functionswhose divergences are also square-integrable

H(div ;D) = {v : v ∈ L2(D)d and ∇ · v ∈ L2(D)}, (2.11)
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(v,u)

div
= (v,u) + (∇ · v,∇ · u) ,and associated norm,

‖v‖div = ‖v‖L2(D)d + ‖∇ · v‖L2(D). (2.12)De�ne wΓ, to be the trace of any scalar function w ∈ H1(D). Thus the set of alltraces determines the following Hilbert space
H

1

2 (Γ) = {g : g = wΓ for some w ∈ H1(D)}. (2.13)Similarly, for vectorial functions v ∈ H(div ;D), (v · n)Γ de�nes the normal trace,where n is the normal outward pointing unit vector to Γ. Therefore the set of all suchfunctions determines
H− 1

2 (Γ) = {q : q = (v · n)Γ for some v ∈ H(div ;D)}. (2.14)Following Powell (2003), for any function g ∈ H
1

2 (D) and q ∈ H− 1

2 (D), 〈·, ·〉represents the duality pairing
〈g, q〉 =

∫

Γ

gq ds, (2.15)and we can de�ne and important subspace of H(div ;D) in which the solution for the�ux and / or velocity q is sought
H0,N(div ;D) = {v ∈ H(div ;D) : 〈v · n, w〉 = 0 ∀w ∈ H1

0,D(D)}. (2.16)2.4 Continuous Weak FormDe�ne W = L2(D) and V = H(div ;D). Multiplying (2.2b) by a scalar basisfunction w ∈ W and integrating over D yields
∫

D

(∇ · q)w dD = −
∫

D

fw dD.



Chapter 2: Mixed and Hybrid Finite Element Theory 22De�ne the bilinear form b(·, ·) and the linear functional L(·) by
b(q, w) =

∫

D

(∇ · q)w dD,

L(w) =

∫

D

fw dD ≡ (f, w)L2(D)

(2.17)Now multiply (2.2a) by a vectorial basis function v ∈ V and integrate over D togive
∫

D

C−1q · vdD −
∫

D

∇u · v dD = 0.Using the following version of Green's formula (see Brezzi & Fortin (1991))
∫

D

∇ · vwdD = −
∫

D

v · ∇wdD +

∫

Γ

(v · n)wdΓ ∀w ∈ H1(D) (2.18)we obtain the following bilinear forms
a(q,v) =

∫

D

C−1(q · v) dD,

b(v, w) =

∫

D

∇ · vw dD.Finally, the weak formulation of the mixed variational problem (2.2) is : �nd (q, u) ∈
V ×W such that

a(q,v) + b(v, u) = 〈g,n · v〉ΓD
∀v ∈ V

b(q, w) = −(f, w) ∀w ∈ W.

(2.19)The weak formulation has a unique solution (q, u) ∈ V×W provided the bilinear forms
a (·, ·) and b (·, ·) satisfy the following inf-sup condition (also called the Ladyzhenskaya-Babu²ka-Brezzi (LBB) condition)

inf
w∈W

sup
v∈V

∫

D

w∇ · v

‖ w ‖W‖ v ‖V

≥ β, (2.20)where the constant β > 0 (for a proof of this condition see Brezzi & Fortin (1991)).



Chapter 2: Mixed and Hybrid Finite Element Theory 232.5 Mixed Finite Element ApproximationLet T h be a partition of D de�ned by closed sub-domains, �nite elements, Ki, i =

1, . . . , n, such that,
T h =

n
⋃

k=1

Kkwhere h denotes the discretisation parameter which describes the size of the �niteelements in T h. Let Eh be the collection of numbered edges (D = 2) or faces (D = 3),
ei, i = 1, . . . , m, where m is the total number of edges in T h. According to theGalerkin method we de�ne the �nite dimensional subspaces V h ⊂ V and W h ⊂ W .The discrete variational formulation of (2.19) is: Find (qh, uh) ∈ V h ×W h such that

a
(qh,vh

)

+ b
(vh, uh

)

= 〈g,n · vh〉ΓD
∀vh ∈ V h

b
(qh, wh

)

= −
(

f, wh
)

∀wh ∈ W h

(2.21)2.5.1 Raviart-Thomas ApproximationA family of local spaces that can be used to construct a suitable subspace V h ⊂

V ≡ H0,N(div; Ω) was proposed by Raviart & Thomas (1977) for R2 and by Nedelec(1980) for R3. Let RT 0 denote the space of linear vectorial functions vi, i = 1, . . . , I,where I is the number of edges or faces associated with a �nite element K. Therefore,we have
RT 0(K) = span{vi}Ii=1.The value of I depends on the type of �nite element chosen for the discretisation of

D, so that I = 3 and I = 4 for triangular and rectangular elements, respectively, and
I = 4 and I = 6 for tetrahedra and parallelepipeda, respectively.It is common practice to de�ne the vectorial basis functions on a reference element
K̂. Thus the de�nition of vectorial basis functions on a general element follows from



Chapter 2: Mixed and Hybrid Finite Element Theory 24the reference element through an a�ne transformation. In such circumstances thewell-known transformation rules for vectorial and scalar basis functions apply (seeBrezzi & Fortin (1991), �III.1.3). Let RT 0(K̂) denote the local I-dimensional spaceof vectorial basis functions v̂i de�ned on K̂. It follows that
RT 0(K) =

{

v : v(x) =
Bv̂(ξ)

J
∀ ξ ∈ K̂ and v̂ ∈ RT 0(K̂)

}

, (2.22)where ξ is the local coordinate system and J is the determinant of the Jacobian ofthe transformation B. We can now de�ne the global spaces
RT 0(D;T h) = {v ∈ H(div ;D) : v|K ∈ RT 0(K) ∀K ∈ T h}, (2.23)and

M0 =
{

v ∈ L2(D)d and q|K ∈ RT 0(K) ∀K ∈ T h
}

. (2.24)A suitable subspace for the approximation to the �ux q is
V h = M0 ∩H0,N(div ;D) =

{

v ∈ RT 0(D;T h) and v · n|ΓN
= 0
}

. (2.25)For triangular and tetrahedra elements the vectorial basis functions v̂ ∈ RT 0(K̂) havethe special form
v̂ =







a+ cξ

b+ cη






, v̂ =















a + cξ

b+ cη

e+ cζ















,respectively, and for rectangular and parallelepipeda elements the form
v̂ =







a + cξ

b+ dη






, v̂ =















a+ cξ

b+ dη

e + fζ















.respectively. The coe�cients a, b, c, d, e, andf are some constants chosen so that theintegral of the normal component of v̂ on the edge or face of K̂ is equal to someconstant δ.



Chapter 2: Mixed and Hybrid Finite Element Theory 25Finally, the pressure u is approximated by piecewise constant functions w. Let
M0(K) denote the one-dimensional space of constant scalar basis functions on K.Hence, a suitable subspace W h ⊂ W ≡ L2(D) is

W h = {w ∈ L2(D) : w|K ∈M0(K) ∀ K ∈ T h}. (2.26)2.5.2 Linear SystemFor each element K we associate a scalar basis function φj, i = 1, . . . , n, which iselement-wise constant. The potential uh can therefore be approximated in terms ofthe global scalar basis functions,
uh(x) =

n
∑

j=1

ujφj, (2.27)where φj is the characteristic function on Kj i.e. it satis�es the following condition
φj =



















1 if φj ∈ Kj

0 elsewhere (2.28)Globally, for each edge or face e ∈ Eh we �x oriented normal vectors νi, i = 1, . . . , m,where m is the total number of edges in Eh. Now, we de�ne a direction index siK sothat
siK =



















+1 if ni
K = νi

K

−1 if ni
K = −νi

K

(2.29)where ni
K denotes the set of unit outward normal vectors at the edges ei ∈ Eh.The vectorial (�ux) basis functions ϕ̂i ∈ V h are de�ned with respect to a referenceelement K̂ so that,

∫

ek

ϕ̂i · ν̂kds =



















1 if k = i

0 if k 6= i

. (2.30)



Chapter 2: Mixed and Hybrid Finite Element Theory 26Note that this is the condition which ensures continuity of the normal componentsof the �ux q across the interelement edges of Eh. Finally, we can approximate qh interms of the global vectorial basis functions ϕi,
qh(x) =

m
∑

i=1

qiϕi. (2.31)The mapping ϕ̂i 7→ ϕi follows from (2.22). Additionally, the global basis functions
ϕi are multiplied by the index si before the system is assembled. The source / sinkterm f(x) is also approximated in terms of the global scalar basis functions φi,

f(x) ≈ n
∑

i=1

fiφi. (2.32)Substituting expansions (2.27), (2.31) and (2.32) into (2.21) we obtain
m
∑

j=1

qjAi,j +

n
∑

k=1

ukBi,k = g

m
∑

i=1

qiBk,i = f

(2.33)where Ai,j is constructed from the element contributions
AK

i,j = a (ϕj ,ϕi)K =

∫

K

C−1ϕK
j ϕ

K
i dK, i, j = 1, . . . , I, (2.34)where I is the number of edges or faces on K. Given an element K, φK = 1, hencethe element contributions to the global matrix Bk,i are given by

BK
i =

∫

ei

ϕi · ni de, i = 1, . . . , I, (2.35)and
Bk,i =



















0 if ei 6∈ Kk

sKk

i if ei ∈ Kk

. (2.36)The elements of the right-hand side vectors de�ned by
fk =

∫

Kk

fdKk gi =



















0 if ei 6∈ ΓD

∫

ei
gde if ei ∈ ΓD

. (2.37)



Chapter 2: Mixed and Hybrid Finite Element Theory 27The system (2.33) can be re-written in matrix notation as follows






A BT

B 0













q

u






=







g

f






, (2.38)where u = [q1, . . . , qm]

T and u = [u1, . . . , un]
T . The matrix A is generally referredto as a weighted velocity matrix and the matrix B is considered to be a discreterepresentation of the divergence operator.Given that A is symmetric and positive de�nite, we have,

q = A−1
(

g − BTp
)

, (2.39)which if substituted into the second equation of (2.38) gives
BA−1BTp = BA−1g − f . (2.40)Matrix BA−1BT is also symmetric and positive de�nite (see Chavent & Ja�ré (1986)and Kaasschieter & Huijben (1992) for an alternative proof). This aspect is veryimportant in terms of the choice of scheme to implement to solve the linear system(2.38).2.5.3 Solution StrategiesA review of solution strategies for the linear system (2.38) is given by Scheichl(2000) and Powell (2003). The solution of system (2.40) by the conjugate gradientmethod is advocated by Kim (2001) and Ewing & Wheeler (1983). However, thecomputation of A−1 is expensive for general meshes and full-tensor C and the Schurcomplement BA−1BT is not sparse. When rectangular meshes and diagonal C areused the element contributions AK are block-diagonal (see Powell (2003)), hencethe computation of A−1

K is cheap and the system (2.40) can be solved e�ciently byCG. Additionally, it can be shown that if the trapezoidal quadrature rule is used



Chapter 2: Mixed and Hybrid Finite Element Theory 28(Kaasschieter & Huijben (1992)) on rectangular meshes, A becomes diagonal. Forthese special cases the solution of (2.40) using CG is recommended.There have been various attempts to solve the saddle-point problem (2.38) us-ing iterative methods. The Uzawa method is a well-suited iterative scheme to solvesaddle-point systems. However, this method requires the computation of the inverseof the coe�cient matrix which becomes infeasible for practical applications (unstruc-tured meshes and full-tensor coe�cients). Fortin & Glowinski (1983) introducedthe augmented Lagrangian method which applies an Uzawa algorithm to a modi�edsaddle-point problem.Algebraic approaches to solve (2.38) were introduced by Rusten & Wither (1992)and several preconditioners are proposed in Rusten &Wither (1993) and Rusten et al.(1996). Powell (2003) and Powell & Silvester (2003) proposed an ideal and practicalpreconditioner of the form
P =







diag(A) 0

0 Bdiag(A)−1BT






. (2.41)The Schur complement Bdiag(A)−1BT can be solved exactly or approximated by oneV-cycle of black-box Algebraic Multi-Grid (AMG).We recall that a preconditioner is de�ned to be h-optimal when the solver iterationcount is independent or almost independent of the discretisation parameter h. Powell& Silvester (2003) showed that the preconditioner de�ned by (2.41) is h-optimal forisotropic C on structured triangular and rectangular meshes. However h-optimalityis lost for diagonal anisotropic coe�cients on triangular meshes. Furthermore, (2.41)is never h-optimal for general full-tensor coe�cients.The de�nition of C-optimality follows from above. The preconditioner (2.41) is

C-optimal, but only for some special cases. In fact, its e�ciency decreases drasticallyfor anisotropic diagonal and full tensor coe�cients on structured triangular meshes.



Chapter 2: Mixed and Hybrid Finite Element Theory 29For structured rectangular meshes (2.41) is more e�cient showing C optimality alsofor anisotropic diagonal coe�cients. Currently, a preconditioner for (2.38) which is
C-optimal for anisotropic full tensor coe�cients has not yet been found.Furthermore, the e�ciency of (2.41) has not yet been tested on unstructured two-dimensional meshes and structured and unstructured three-dimensional meshes.An approach which has been extensively used in the literature (see Kaasschieter(1995)) is the hybrid method, introduced by Fraeijs de Veubeke (1965) and furtherdeveloped by Arnold & Brezzi (1985) and Brezzi & Fortin (1991). This is discussedfurther in the next section.2.6 Mixed Hybrid Finite Element MethodArnold & Brezzi (1985) presented a way to derive a symmetric positive de�nitecoe�cient matrix for problem (2.2). The continuity condition on the normal compo-nents of the �ux q across the �nite element edges or faces is relaxed, i.e. q is nowdiscontinuous across element interfaces. The continuity condition (required for thetype of problems herein investigated) is subsequently re-established by introducingLagrange multipliers λ at those interfaces. The velocity space, being discontinuous,can be eliminated obtaining a system with unknowns uh and Lagrange multipliers
λh. Note that the Lagrange multipliers are themselves the solution for the potential
u at the element interfaces. Furthermore the unknowns uh can also be eliminated toobtain a system of equations depending only on the Lagrange multipliers λh. This�nal system is positive-de�nite and of size m ×m, where m is the number of edgesor faces in T h. Hence the conjugate gradient can be used to solve the discrete linearsystem e�ciently.In the following discussion we use the notation of Brezzi & Fortin (1991). Let
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Λ0(e) denote the space of constant functions on e, ∀e ∈ Eh. We de�ne the multiplierspace

Λ0

(

Eh
)

=
{

λh : λh|e ∈ Λ0(e)∀e ∈ Eh
}

, (2.42)and the subspaces of multipliers that either vanish or approximate g on ΓD

Λ0,ΓD
= {λ ∈ Λ (Eh) : λ = 0 on ΓD} ,

Λg,ΓD
=

{

λ ∈ Λ (Eh) : λ = gh on ΓD

}

,

(2.43)where
∫

e

(

gh − g
)

ds = 0, ∀e ∈ ΓD.The �ux approximation qh is now sought in M0 and the Lagrange multipliers arede�ned in Λ0(e). Hence the following bilinear forms are de�ned
c
(

µh,qh
)

=
∑

K∈Th

∫

ΓK

µhqh · n dΓK

b
(

qh, wh
)

h
=

∑

K∈Th

∫

K

(

∇ · qh
)

wh dK

(2.44)The hybrid version of the lowest-order Raviart-Thomas mixed method for problem(2.2) reads: Find (qh, uh, λh) ∈ M0 ×W h × Λ0,ΓD
such that

a
(

qh,vh
)

+ b
(

vh, uh
)

h
= c

(

λh,v
h
)

, ∀vh ∈ M0,

b
(

qh, wh
)

h
= −

(

f, wh
)

, ∀wh ∈ W h,

c
(

λh,qh
)

= 0, ∀λh ∈ Λ0,ΓD
.

(2.45)
Given the space M0 as de�ned in 2.24 and the vectorial basis functions de�ned in�2.5.1, the approximation for the �ux, qh(x), can be expressed as follows

qh(x) =
∑

K∈Th

IK
∑

i=1

qKi ϕK
i , (2.46)where, I = 3, 4 depending on the choice of �nite elements for the discretisation of T h.



Chapter 2: Mixed and Hybrid Finite Element Theory 31The potential u(x) is approximated as in (2.27). Before expressing the approxi-mation for the Lagrange multipliers, let Ih ⊂ Eh be the collection of numbered edges(D = 2) or faces (D = 3), ei, i = 1, . . . , l, of {e ∈ Eh : e 6⊂ ΓD}. l denotes thetotal number of edges in Ih. The space Λ0,ΓD
is spanned by scalar basis functions µi,

i = 1, . . . , l that satisfy the following condition
µi =



















1 if ei ∈ Ih

0 elsewhere . (2.47)The approximation of the Lagrange multipliers, λh, can now be stated as follows
λh(x) =

l
∑

i=1

λiµi. (2.48)Problem (2.45) can be re-stated in matrix notation as follows














A BT CT

B 0 0

C 0 0





























q

u

λ















=















g

f

0















. (2.49)The clear distinction between (2.49) and (2.21) is the choice of the approximationspace for the �ux q. The space M0 does not require the continuity condition qh · nwhich characterizes the space V h and in a more general sense the spaces H(div ;D).The basis for M0 is chosen so that vh|K 6= 0 only in K and vanishes elsewhere. Theimportant advantage of de�ning vh in a discontinuous space is that the matrix Abecomes block-diagonal and q can be eliminated at the element level as follows
q = A−1

(

g −BTu− CTλ
) (2.50)Note that, inverting A corresponds to invering its diagonal blocks, thus this can becarried out at the element level with little computational expense. Now, using (2.50)



Chapter 2: Mixed and Hybrid Finite Element Theory 32to eliminate q from (2.49) we obtain the following system






BA−1BT BA−1CT

CA−1BT CA−1CT













u

λ






=







BA−1g − f

CA−1g






. (2.51)Now the matrix BA−1BT is symmetric and positive de�nite (see Brezzi & Fortin(1991) and Kaasschieter & Huijben (1992) for the proof) and also diagonal (Kaass-chieter & Huijben 1992). Therefore, we can eliminate the unknown u and obtain

u =
(

BA−1BT
)−1 (

BA−1g − BA−1CTλ− f
)

. (2.52)Using (2.52) in (2.51) we obtain the discrete linear system
Dλ = r, (2.53)where

D = CA−1CT − CA−1BT
(

BA−1BT
)−1

BA−1CT (2.54)and
r = CA−1g + CA−1BT

(

BA−1BT
)−1 (

f − BA−1g
)

. (2.55)The matrix D is symmetric and positive de�nite, hence (2.53) can be solved usingthe conjugate gradient method.2.6.1 Solution StrategiesAs already anticipated the discrete linear system (2.53) can be solved using theCG solver. There is a vast number of choices for a preconditioner based on D to beused with CG. Among those choices are simple Successive Over-Relaxation (SOR or/ and the symmetric version SSOR) preconditioning, and incomplete factorisationsof D (ILU) (see Saad (2003)).A performance analysis for (2.53) using an incomplete Cholesky factorization of
D is available in Kaasschieter & Huijben (1992). Several authors use CG for (2.53)



Chapter 2: Mixed and Hybrid Finite Element Theory 33equipped with various preconditioners. Younes & Fontaine (2008b) use the e�cientEisenstat's implementation (Eisenstat 1981) of CG. The numerical experiments re-ported do not show either h-optimality nor C-optimality. To the best knowledge ofthe author, an e�cient preconditioner for (2.53) is currently not available.Multigrid methods for symmetric and positive de�nite systems have been largelystudied, and theory, implementation and applications are available in standard ref-erence books (see Briggs et al. (2000), Hackbush (2003), for example). Convergenceresults for multigrid methods for nonconforming �nite elements are given in Brenner(1989, 1992) and Braess & Verfürth (1990). Further results and comparison withmixed methods are given in Chen (1996). Although numerical results presented inthese works show h-optimality, analysis of the e�ect of C is not included. The e�ectof the conductivity coe�cient on AMG convergence is considered in Powell (2003).However, results for unstructured and 3-dimensional meshes are not provided.In this work, we follow the ideas presented in Powell (2003) approximating Dby one V-cycle of AMG as preconditioner for (2.53). We extend the analysis onunstructured meshes.The e�cient solution of problems (2.1) and (2.2) for full-tensor, highly anisotropiccoe�cients remains an open question. Some authors have used sparse direct solversfor this purpose. Recently Younes & Fontaine (2008a) demonstrated the e�ciency ofsparse direct solvers based on unifrontal/multifrontal methods (Davis & Du� 1997,1999) to solve (2.53) on quadrilateral meshes. Comparison with iterative methods isnot provided.The e�ciency of sparse direct solvers such as UMFPACK (Davis 2004) dependson the size of the problem. The general consensus is that sparse direct solvers arevery e�cient for 2-dimensional problems, but their performance deteriorates for 3-dimensional problems. Certainly the trade o� at which sparse direct solvers become



Chapter 2: Mixed and Hybrid Finite Element Theory 34less e�cient than iterative solvers is problem dependent. In relation to this work,experiments only using iterative solvers are reported.



Chapter 3
Mixed and Hybrid Finite ElementNumerical Experiments
3.1 IntroductionIn this section the computational cost required to solve the linear systems obtainedby the MFE and MHFE discretisations derived in Chapter 2 is evaluated. We usestate-of-the-art iterative solvers equipped with e�cient preconditioners. The compu-tational cost is evaluated based on number of iterations Nit, required by the solver toachieve convergence, and the CPU time tCPU in seconds.The codes herein deployed have been developed within the MATLAB environment(MATLAB 1997) and the computations are all performed in serial. The developmentof the same algorithms in a parallel architecture is matter for future work and de-velopment. The implementation of the Preconditioned Conjugate Gradient (PCG)algorithm follows Saad (2003) and the MINRES implementation was modi�ed fromFischer (1996). The tolerance within the solvers is set to 10−10 and the maximumnumber of iterations is set to maxit = 104. All numerical experiments have been35



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 36carried out using a standard dual-core laptop PC with 4GB of RAM.The scope of this chapter can be summarised with the following question: Issolving the hybrid problem more e�cient than solving the inde�nite system generatedby the mixed method? Given the review on solution strategies (see �2.5.3 and �2.6.1),it appears that the answer to this question is strictly dependent on the problem beingconsidered.Therefore, several test problems, each di�ering in terms of the conductivity coe�-cient C, will be analysed. Numerical simulations are carried out on structured/unstructuredtriangular and rectangular meshes to assess the e�ect of discretisations on the solvers'performance. Throughout the discussion, emphasis is given to those problem settingswhere h and C optimality is achieved.Two tables are presented for each test problem. The �rst table includes results forpreconditioned MINRES using (2.41) with a direct solver for the Schur complement.The preconditioned CG solver is used for the MHFE formulation (2.49) using anincomplete Cholesky factorisation of the matrix D as preconditioner. These solversare referred to as p − MINRES and PCG in the tables and following sections,respectively. In the second table results are presented for MINRES with one V-cycle of black-box AMG used for the approximation of the Schur complement. Thepreconditioner for CG is the AMG approximation of the coe�cient matrix D. Thesesolvers are referred to as p−MINRESAMG and PCGAMG in the tables and followingsections, respectively.The AMG solver we use is publicly available from the PIFISS (Silvester & Powell2007) solvers library, written in MATLAB. Other versions written in FORTRAN /MATLAB such as the HSL_MI20 (Boyle et al. 2007, 2009) are also freely availablefor academic use. Two types of smoothing functions are available in the library,these are the point Gauss-Seidel (PGS) and the point damped Jacobi (PDJ). In the



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 37following experiments we use the latter with two sweeps per iteration. Note that thereis no attempt at tuning the several AMG parameters and that experiments with PGSwere not carried out.Note that the setup time for some of the preconditioners used in this chapter canbe signi�cantly large especially for �ne meshes. In the tables included in the followingsections the setup time has been reported as well as the solvers' solution timings.The author would like to express his gratitude to Professor E.F. Kaasschieter forhis help with the computer implementation of the MHFEM and for providing usefulMATLAB functions to develop the code used for the experiments presented in thischapter and in this work in general.3.2 Numerical experiments on triangular meshesThe numerical experiments are carried out on square domains. Structured meshesare obtained by partition of D into regular squares of area h2. Each square is fur-ther subdivided into two right angled triangles. Unstructured meshes are created byperturbation of structured meshes as explained in �3.2.5.The analytical and numerical solutions for each test problem are presented. How-ever, given that the MFE and MHFE solutions are equivalent, we only show resultsfor the former method. The same applies for the potential and velocity L2-norm errorestimates. The L2 error estimates are given by
‖q− qh‖L2 =

{

T
∑

i=1

|Ti|
(

qi − qh
i

)2

}
1

2

, (3.1)
‖φ− φh‖L2 =

{

T
∑

i=1

|Ti|
(

φi − φh
i

)2

}
1

2

, (3.2)where |Ti| is the area of the �nite element and q is evaluated at the centroid ofeach �nite element using Darcy's Law. The numerically computed �uxes (normal



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 38components of the �ux at the edge mid-sides) are post-processed to obtain valuesfor qh = (qx, qy)
h at each element centroid. The analytical and numerical potentialsolution is evaluated at the centroid of each �nite element.The same experiments presented in this section are reported for structured andunstructured rectangular meshes in �3.3.3.2.1 Problem 1: heterogeneous, isotropic and diagonal CThe �rst test problem is similar to the one presented in Kaasschieter & Huijben(1992). The conductivity coe�cient is isotropic but heterogeneous (i.e. it variesspatially) and it is given by

K =







a(x) 0

0 a(x)






,where

a(x) =
1

1 + 2ε cos(πx) cos(πy) + ε2 cos2(πy)
. (3.3)The case of hydraulic conductivity with sudden jumps (discontinuous case) is reportedin �3.2.4. Given a source term f = 0 and boundary conditions de�ned by

gD(x) = π(1− y), x ∈ ΓD

ΓD = {x ∈ Γ : y = 0 or y = 1},
(3.4)and

gN(x) = 0, x ∈ ΓN

ΓN = {x ∈ Γ : x = 0 or x = 1},
(3.5)



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 39the boundary value problem (2.1) has potential and velocity analytical solutions givenby
u(x) = π(1− y)− ε cos(πx) sin(πy).

q(x) = −a(x)











πε sin(πx) sin(πy)

−π − ε cos(πx) cos(πy)











.

(3.6)
The MFEM potential and velocity solutions for h = 1

32
and ε = 0.9 are depictedin Figure 3.1.
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(b) Log of conductivity �eld C(x)Figure 3.1: Numerical solutions and conductivity �eld for ε = 0.9 - Test problem 1Table 3.1 shows L2(Dh) error estimates for the potential and the x and y compo-nents of the velocity �eld. The error estimates are in agreement with results presentedby other authors (Kaasschieter & Huijben 1992) and with theoretical results (Brezzi &Fortin 1991). Second order convergence, O(h2), is observed for the potential solutionand �rst order convergence, O(h), for the velocity solutions.The conductivity coe�cient varies from (1− ε)−2 to (1 + ε)−2. When ε→ 1, a(x)



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 40becomes singular and therefore the rate of convergence of the potential and velocitysolutions deteriorates signi�cantly (see Table 3.2 and 3.3). In fact, for ε = 0.999the y component of the velocity solution does not converge. An analysis of the errordistribution for the velocity components reveals that this is concentrated in the upperleft and lower right corners of the domain. This location corresponds to the regionswhere the highest variation in the coe�cient a(x) occurs (see Figure 3.1b). Thislimitation could be resolved with local mesh re�nement for the upper-left and lower-right regions of the domain.Table 3.1: L2(Dh) error estimates for the u, qx and qy for test problem 1, ε = 0.9

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

4.34E − 03 − 2.44E − 01 − 6.27E − 01 −
1
32

9.25E − 04 2.23 1.15E − 01 1.09 2.97E − 01 1.08
1
64

2.25E − 04 2.04 5.72E − 02 1.00 1.41E − 01 1.07
1

128
5.61E − 05 2.00 2.85E − 02 1.01 7.02E − 02 1.01

1
256

1.40E − 05 2.00 1.42E − 02 1.00 3.51E − 02 1.00Table 3.2: L2(Dh) error estimates for the u, qx and qy for test problem 1, ε = 0.99

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

1.09E − 02 − 7.43E − 01 − 1.64E + 00 −
1
32

3.17E − 03 1.78 5.52E − 01 0.43 1.64E + 00 0.00
1
64

8.19E − 04 1.95 3.59E − 01 0.62 1.51E + 00 0.11
1

128
1.74E − 04 2.24 1.87E − 01 0.94 1.20E + 00 0.34

1
256

3.27E − 05 2.41 8.51E − 02 1.13 6.18E − 01 0.96Table 3.3: L2(Dh) error estimates for the u, qx and qy for test problem 1, ε = 0.999

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

1.22E − 02 − 8.28E − 01 − 1.91E + 00 −
1
32

3.97E − 03 1.62 6.92E − 01 0.26 2.19E + 00 < 0
1
64

1.29E − 03 1.63 5.74E − 01 0.27 2.48E + 00 < 0
1

128
4.09E − 04 1.65 4.65E − 01 0.30 2.69E + 00 < 0

1
256

1.25E − 04 1.72 3.57E − 01 0.38 2.75E + 00 < 0The numerical experiments using Krylov subspace methods for problem 1 arereported in Table 3.4. The table includes the number of iterations required to attain



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 41convergence, Nit, and the solution timings. For the CG, the set-up time for thepreconditioner, i.e the time required to perform the incomplete Cholesky factorisationof the coe�cient matrix, is reported separately.The post-processing time (MHFEM only) whereby the potential and velocity so-lutions are obtained from the Lagrange multipliers solution should also be considered.However this is negligible if compared with the set-up and solution times reportedin Table 3.4. In fact, for a �ne mesh, h = 1
256

, the post-processing time is only 0.15seconds.The data reported in Table 3.4 can be summarised as follow:1. MINRES, equipped with the Schur complement preconditioner (2.41) is h-optimal and C-optimal, when C is an isotropic diagonal tensor;2. CG using an incomplete Cholesky factorization of the coe�cient matrix D aspreconditioner, is C-optimal but not h-optimal. Nit grows linearly with h leadingto large CPU times for �ne meshes;3. On average the PCG CPU cost per iteration is lower than that required forpreconditioned MINRES. Although this is a signi�cant advantage of PCG, it isthe overall number of iterations Nit which determines the total CPU cost tCPU ;4. The results presented indicate that heterogeneity has no e�ect on the perfor-mance of preconditioned MINRES. Conversely, although relatively small, anincrease of Nit and consequently tCPU is recorded using PCG for either smallor large values of ε.The numerical experiments using algebraic multigrid as preconditioner are pre-sented in Table 3.5. The main results can be summarised as follow:



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 42Table 3.4: Iteration count and timings (set-up+solution time) for p−MINRES and
PCG - Test problem 1

p−MINRES PCG

h ε Nit tCPU Nit tCPU

1
64

ε = 0.999 43 0.97 135 1.11 + 1.35
ε = 0.99 43 0.97 139 1.10 + 1.42
ε = 0.9 44 1.03 138 1.11 + 1.42

1
128

ε = 0.999 43 5.54 256 17.97 + 11.63
ε = 0.99 43 5.46 255 17.99 + 11.87
ε = 0.9 43 5.58 270 18.09 + 12.10

1
256

ε = 0.999 43 28.38 525 285.16 + 113.93
ε = 0.99 43 28.34 495 281.56 + 108.26
ε = 0.9 43 28.36 535 284.56 + 117.261. Inverting the Schur complement by AMG is more e�cient than using sparsedirect solvers. This determines lower CPU times than recorded in Table 3.4even though the number of MINRES iterations is larger;2. The computational e�ciency of the AMG precoditioner is partly nulli�ed by thelarge CPU time required to construct the coarse grids. This CPU cost growslinearly with the mesh size;3. CG solution times and iteration counts are signi�cantly reduced when one V-cycle of AMG code is used to approximately invert the MHFEM coe�cientmatrix;4. As for the MINRES case the e�ciency of AMG is partly nulli�ed by the largecomputational cost of constructing the coarse grids for the approximation. Notethat the coarsening process implemented on the MHFEM linear system is twiceas expensive as the one implemented on the Schur complement system;5. Both AMG implementations are h-optimal and C-optimal;6. Heterogeneity has no e�ect on the performance of both solvers.



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 43Table 3.5: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 1

p−MINRESAMG PCGAMG

h ε Nit tCPU Nit tCPU

1
64

ε = 0.999 49 1.33 + 0.98 9 1.93 + 0.13
ε = 0.99 51 1.37 + 1.05 9 1.94 + 0.13
ε = 0.9 51 1.29 + 1.04 9 1.95 + 0.13

1
128

ε = 0.999 51 8.04 + 4.21 10 13.98 + 0.50
ε = 0.99 52 8.28 + 4.38 9 14.10 + 0.43
ε = 0.9 51 8.04 + 4.28 9 13.88 + 0.42

1
256

ε = 0.999 56 110.60 + 22.42 9 269.54 + 2.20
ε = 0.99 56 109.60 + 22.62 10 281.54 + 2.34
ε = 0.9 54 108.31 + 22.03 9 268.47 + 2.293.2.2 Problem 2: heterogeneous, anisotropic and diagonal CThe second test problem considers an heterogeneous, anisotropic and diagonaltensor. The conductivity coe�cient C(x) is given by

C(x) =







αx2 + y2 0

0 x2 + y2






. (3.7)The anisotropy degree of the conductivity �eld varies depending on the values ofthe coe�cient α. When α = 1, the conductivity �eld is isotropic.The potential and velocity analytical solutions are chosen so that homogeneousDirichlet boundary conditions are prescribed on Γ. These are,

u(x) = (x− x2)(y − y2),

q(x) = −











(y2 + x2α)(−1 + 2x)y(−1 + y)

(x2 + y2)x(−1 + x)(−1 + 2y)











.

(3.8)
The source term is obtained by substituting (3.8) and (3.7) in (2.1), so that

f(x) = −2xαy + 2xαy2 + 6x2αy − 6x2αy2+

2y3 − 2y4 − 2xy + 6xy2 + 2x2y − 6x2y2 + 2x3 − 2x4.

(3.9)



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 44The MFEM potential and velocity solutions for α = 1 is depicted in Figure 3.2(a).The source term corresponding to (3.9) is illustrated in Figure 3.2(b).
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(b) Source term f(x)Figure 3.2: MFEM solutions and source term - Test problem 2Tables 3.6, 3.7 and 3.8 show L2(Dh) error estimates for the potential and the
x and y components of the velocity �eld, for α = 10−2, 1, 102, respectively. As forthe previous test case second order convergence, O(h2), is recorded for the potentialsolution and �rst order convergence, O(h), for the velocity solutions. Note that,although the convergence rates are preserved for all values of α, for the anisotropiccase the absolute errors are two orders of magnitude larger for the potential solutionand one order of magnitude larger for the velocity solutions when compared to theisotropic case.The tables also include the minimum value for the potential solution, umin. Ac-cording to (3.8), u(x) is always positive and it ranges from 0, at the domain bound-aries, to 0.0625 at the center of the domain. Interestingly, for large anisotropic factors(α = 102) unphysical negative oscillations in the potential solution are recorded (see



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 45Table 3.8) for all values of h. The same behaviour is not recorded for small values of
α (see Table 3.6).Table 3.6: L2(Dh) error estimates for the u, qx and qy for test problem 2, α = 10−2

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin

1
16

1.05E − 03 − 3.44E − 03 − 4.14E − 03 − 3.15E − 04
1
32

2.80E − 04 1.91 1.73E − 03 0.99 2.09E − 03 0.99 8.02E − 05
1
64

7.11E − 05 1.98 8.69E − 04 1.00 1.05E − 03 1.00 2.02E − 05
1

128
1.78E − 05 2.00 4.35E − 04 1.00 5.24E − 04 1.00 5.07E − 06

1
256

4.46E − 06 2.00 2.17E − 04 1.00 2.62E − 04 1.00 1.27E − 06Table 3.7: L2(Dh) error estimates for the u, qx and qy for test problem 2, α = 1

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin

1
16

1.85E − 04 − 4.32E − 03 − 4.32E − 03 − 3.22E − 04
1
32

4.65E − 05 1.99 2.18E − 03 0.99 2.18E − 03 0.99 8.11E − 05
1
64

1.16E − 05 2.00 1.09E − 03 1.00 1.09E − 03 1.00 2.03E − 05
1

128
2.90E − 06 2.00 5.47E − 04 1.00 5.47E − 04 1.00 5.08E − 06

1
256

7.26E − 07 2.00 2.74E − 04 1.00 2.74E − 04 1.00 1.27E − 06Table 3.8: L2(Dh) error estimates for the u, qx and qy for test problem 2, α = 102

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin

1
16

5.38E − 03 − 3.57E − 01 − 3.00E − 01 − −8.10E − 03
1
32

1.35E − 03 1.99 1.79E − 01 0.99 1.51E − 01 0.99 −2.19E − 03
1
64

3.39E − 04 2.00 8.97E − 02 1.00 7.53E − 02 1.00 −5.65E − 04
1

128
8.47E − 05 2.00 4.49E − 02 1.00 3.77E − 02 1.00 −1.43E − 04

1
256

2.12E − 05 2.00 2.24E − 02 1.00 1.88E − 02 1.00 −3.58E − 05The computational cost of solving the MFEM and MHFEM linear systems fordiagonal anisotropic conductivity coe�cients is reported in Tables 3.9 and 3.10.Following the same structure used for test problem 1, Table 3.9 reports the com-putational cost of MINRES using the exact version of preconditioner (2.18). For theMHFEM system, CG is used in conjunction with an incomplete Cholesky factorisationof the coe�cient matrix.The numerical experiments were carried out with anisotropic coe�cient α rangingfrom 10−2 to 102. The main results reported in Table 3.9 are summarised as follows:



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 461. Anisotropy deteriorates the performance of both preconditioned MINRES andCG. The number of p − MINRES iterations for α = 10−2 and α = 102 isbetween �ve to six times larger than for the isotropic case;2. For �ner meshes (h = 1
256

) the factorisation of the coe�cient matrix becomesincreasingly costly, determining larger CPU costs than preconditioned MINRES;3. In general, the solvers are not C-optimal. However, �xing α, MINRES is h-optimal. The CG iteration count varies largely also for �xed α.Table 3.9: Iteration count and timings (set-up+solution time) for p−MINRES and
PCG - Test problem 2

p−MINRES PCG
h α Nit tCPU Nit tCPU

1
64

α = 102 240 5.93 78 0.99 + 0.92
α = 1 43 0.82 112 1.08 + 1.13

α = 10−2 211 5.10 110 1.03 + 1.10
1

128
α = 102 246 32.51 155 15.80 + 6.94
α = 1 43 5.40 219 17.45 + 10.03

α = 10−2 226 29.66 225 16.39 + 10.38
1

256
α = 102 248 166.29 313 242.93 + 67.91
α = 1 43 28.68 435 266.38 + 94.77

α = 10−2 233 155.29 465 248.99 + 100.43The results for the numerical experiments using AMG as preconditioner for CG andMINRES are reported in Table 3.10. These can be summarised as follow:1. In contrast to the isotropic case, the overall CPU cost (AMG coarsening andMINRES solution time) is lower than the exact version (see Table 3.9);2. Similarly to test problem 1, the solution timings and iteration counts recordedfor CG preconditioned by the AMG approximation of the coe�cient matrixare by far the smallest among all methods considered. The AMG e�ciency ispartly nulli�ed by the large cost of constructing the grids for the approximation.



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 47This is twice as much as implementing the coarsening on the Schur complementsystem;3. The experiments show that, for α 6= 1, the number of CG iterations variesslightly with respect to the isotropic case. Conversely, the MINRES iterationcount is between �ve to six times larger.Table 3.10: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 2

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64

α = 102 235 2.81 10 1.96 + 0.15
α = 1 50 0.61 9 1.96 + 0.13

α = 10−2 212 2.51 11 2.04 + 0.15
1

128
α = 102 242 10.56 12 12.75 + 0.56
α = 1 52 2.17 9 14.36 + 0.44

α = 10−2 227 10.11 12 14.01 + 0.56
1

256
α = 102 245 54.91 13 241.33 + 3.18
α = 1 54 11.73 10 256.18 + 2.43

α = 10−2 232 52.73 12 251.11 + 2.88When the conductivity coe�cient is a diagonal anisotropic tensor, MINRES pre-conditioned by (2.41) is not C-optimal. The reason for this is associated with thestructure of the element sti�ness matrix. It can be shown, in fact, that each rowof the element sti�ness matrix (triangular elements) is scaled with respect to bothcoe�cients of the diagonal tensor, C (see Powell (2003)). This causes a signi�cant de-terioration in MINRES performance and loss of C-optimality which would otherwisebe the case with isotropic coe�cients. As we will see in �3.3.2, such a situation doesnot occur if rectangular elements are used.



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 483.2.3 Problem 3: heterogeneous, anisotropic and full-tensor CThis test problem is reported in Younes & Fontaine (2008b,a), Younes et al. (2010).The conductivity �eld is described by a full-tensor given by
C(x) =







y2 + αx2 (α− 1)xy

(α− 1)xy x2 + αy2






. (3.10)The analytical solution for the potential is given by

u(x) = exp(−20π((x− 1

2
)2 + (y − 1

2
)2), (3.11)and the velocity vector is obtained using Darcy's Law q(x) = C(x)∇u. The sourceterm is obtained from f(x) = −∇ · C(x)∇u.The MFEM potential and velocity solutions for h = 1
32

are depicted in Figure3.3(a) and the source term for α = 1 is illustrated in Figure 3.3(b).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0

0

0

0

0

0

0.1

0.1

0.
1

0.2

0.
2

0.
2

0.
3

0.
3 0.40.
4

0.5

0.
5

0.6

0.6

0.70.8
0.9

(a) Potential u and velocity q solutions 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−20

−20

0

0

20

20

40

406080
100

120

(b) Source term f(x)Figure 3.3: MFEM solutions and source term for α = 1 - Test problem 3Note that the source term is symmetric with respect to y = x and that thesymmetry of the numerical solution improves with mesh re�nement.



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 49Error estimates for α = 1, 102, 103 are reported in Tables 3.11, 3.12 and 3.13,respectively. Second order convergence for the potential and �rst order convergencefor the velocities is con�rmed also for the full-tensor case. However the magnitudeof the errors increases signi�cantly as the order of the anisotropy factor α increases.For α = 1000 the error in the potential and velocity solutions is three orders ofmagnitude larger than for the isotropic case. Hence, for large anisotropy the solutionis unphysical and should be considered with care.A proof of this is given by the minimum and maximum values of the potentialsolution. This is always positive and ranges from approximately zero close to theboundaries to one at the centre of the domain. For α = 102 and α = 103 the minimumand maximum values of the numerical solution are signi�cantly below and above thephysical limits of the analytical solution. These unphysical oscillations become lesssevere for �ner meshes, indicating that local mesh re�nement could potentially resolvethis problem.Note that spurious oscillations are also present for the isotropic case. This isdiscordant with results obtained for test isotropic case in test problem 2 (see Table3.7). Although this is somewhat surprising it largely agrees with results presented byother researchers. Younes & Fontaine (2008b) shows that for the same test problemspurious negative oscillations are present on isotropic and anisotropic numerical ex-periments not only for the MFEM but also for the MPFA method. In the isotropiccase the spurious oscillations disappear with mesh re�nement, in fact for the caseof h = 1
512

(not shown in Table 3.11) negative oscillations are of the order of 10−7.Reasons for negative oscillations in the isotropic case are not reported by Younes &Fontaine (2008b) and this matter requires further future investigation.
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Table 3.11: L2(Dh) error estimates for the u, qx and qy for test problem 3, α = 1

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin umax

1
16

4.29E − 03 − 1.25E − 01 − 1.25E − 01 − −2.90E − 03 9.25E − 01
1
32

1.08E − 03 1.98 6.12E − 02 1.03 6.12E − 02 1.03 −6.03E − 04 9.81E − 01
1
64

2.72E − 04 2.00 3.04E − 02 1.01 3.04E − 02 1.01 −1.21E − 04 9.95E − 01
1

128
6.80E − 05 2.00 1.52E − 02 1.00 1.52E − 02 1.00 −2.48E − 05 9.99E − 01

1
256

1.70E − 05 2.00 7.59E − 03 1.00 7.59E − 03 1.00 −5.17E − 06 1.00E + 00Table 3.12: L2(Dh) error estimates for the u, qx and qy for test problem 3, α = 102

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin umax

1
16

5.12E − 01 − 1.15E + 01 − 1.15E + 01 − −1.56E + 00 4.59E + 00
1
32

1.58E − 01 1.70 5.43E + 00 1.08 5.43E + 00 1.08 −5.20E − 01 2.17E + 00
1
64

4.43E − 02 1.84 2.54E + 00 1.10 2.54E + 00 1.10 −1.43E − 01 1.32E + 00
1

128
1.17E − 02 1.92 1.23E + 00 1.05 1.23E + 00 1.05 −3.74E − 02 1.08E + 00

1
256

2.99E − 03 1.97 6.07E − 01 1.02 6.07E − 01 1.02 −9.42E − 03 1.02E + 00Table 3.13: L2(Dh) error estimates for the u, qx and qy for test problem 3, α = 103

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin umax

1
16

5.22E + 00 − 1.17E + 02 − 1.17E + 02 − −1.64E + 01 3.82E + 01
1
32

1.63E + 00 1.68 5.53E + 01 1.08 5.53E + 01 1.08 −6.20E + 00 1.31E + 01
1
64

4.65E − 01 1.81 2.57E + 01 1.10 2.57E + 01 1.10 −1.84E + 00 4.30E + 00
1

128
1.25E − 01 1.89 1.23E + 01 1.06 1.23E + 01 1.06 −4.99E − 01 1.85E + 00

1
256

3.27E − 02 1.94 6.08E + 00 1.02 6.08E + 00 1.02 −1.31E − 01 1.21E + 00



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 51The computational cost of solving the linear systems of equations using p −

MINRES and PCG is reported in Table 3.14. The main results of this table can besummarised as follows:1. As previously observed for test problem 2, for large degrees of anisotropy theperformance of the MINRES solver deteriorates signi�cantly. The larger thevalue of α the worse it performs;2. Conversely, CG behaves quite di�erently for full tensor coe�cients. Namely,
CG solution timings and iteration counts seems to decrease for increasing α.This behaviour is considered to be problem related;3. For small and medium size meshes, PCG is largely more e�cient than p −

MINRES. However, for �ner meshes (h = 1
256

) the cost of implementing theCholesky factorisation grows signi�cantly. Thus for α = 102, MINRES is moree�cient than CG and vice versa for α = 103.Table 3.14: Iteration count and timings (set-up+solution time) for p −MINRESand PCG - Test problem 3

p−MINRES PCG

h α Nit tCPU Nit tCPU

1
64

α = 103 460 11.57 12 0.94 + 0.16
α = 102 271 6.61 21 0.95 + 0.24
α = 1 43 1.01 113 1.10 + 1.17

1
128

α = 103 380 49.37 14 15.56 + 0.67
α = 102 316 41.25 37 15.36 + 1.73
α = 1 45 5.69 220 17.09 + 10.02

1
256

α = 103 474 316.87 18 238.50 + 4.13
α = 102 334 222.67 73 238.48 + 16.31
α = 1 45 29.40 441 266.61 + 97.68The numerical experiments results using AMG are reported in Table 3.15. These canbe summarised as follows:



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 521. The e�ciency of the iterative solvers when used with AMG preconditioners iscon�rmed also for problems with general full tensor coe�cients;2. In contrast to Table 3.14, the number of CG iterations and solution timingsincrease with increasing anisotropic coe�cient;3. The CG iteration count is between seven to twenty-one times larger than the ref-erence isotropic case, α = 1. This di�ers signi�cantly from the results recordedfor diagonal anisotropic coe�cients and indicates that the AMG approximationof the coe�cient matrix is not a robust preconditioner for CG when general full-tensor coe�cients are used;4. As for Table 3.14 it is evident that no one solver consistently performs betterthan the others. Instead, the solvers' performance depends on the size of themesh and the degree of anisotropy. Thus p −MINRESAMG performs betterfor �ne meshes, h = 1
256

, and PCGAMG performs better for medium to smallsize meshes.Table 3.15: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 3

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64

α = 103 475 1.58 + 4.50 195 2.22 + 1.94
α = 102 285 1.60 + 2.84 64 2.18 + 0.66
α = 1 50 1.27 + 0.46 8 1.97 + 0.12

1
128

α = 103 415 9.63 + 18.63 192 14.73 + 8.84
α = 102 345 9.51 + 15.32 65 15.03 + 2.93
α = 1 52 8.14 + 2.19 9 14.39 + 0.43

1
256

α = 103 546 102.33 + 129.59 192 249.91 + 49.38
α = 102 383 101.38 + 91.70 66 252.64 + 17.03
α = 1 54 111.51 + 11.36 9 271.42 + 2.14



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 533.2.4 Problem 4: discontinuous, anisotropic and full-tensor CThis test problem was originally presented in Crumpton et al. (1995). Using thisexample we intend to assess the e�ciency and accuracy of MFEM for cases in whichthe conductivity coe�cient is strongly discontinuous. This is a situation which isvery often encountered in applications and therefore of signi�cant importance for thiswork.De�ne D = [−1, 1]2 and C is given by
C =







1 0

0 1






for x < 0, C = α







2 1

1 2






for x > 0. (3.12)The parameter α controls the strength of the discontinuity at x = 0. The exactsolution for this test problem is given by

u(x) =



















(2 sin(y) + cos(y))αx+ sin(y) for x < 0,

exp(x) sin(y) for x > 0.

(3.13)The MFEM solutions for α = 1 and α = 100, for h = 1
32

are illustrated in Figure3.4.Error estimates for α = 1 are reported in Table 3.16. For this test problemwe observe the loss of one order of magnitude in the rate of convergence for thepotential solution. However, the velocity solution retains the characteristic �rst orderconvergence rate which was recorded also for the other test problems. The error for thepotential solution is located at the discontinuity and it vanishes as h is progressivelyre�ned. Local mesh re�nement at the location of the discontinuity should enhancethe rate of convergence in the potential solution.Tables 3.17 and 3.18 report discrete error estimates for α = 101 and α = 102.Interestingly, the magnitude of the errors in the potential solution are of the sameorder as those reported for α = 1. In contrast, the velocity errors are one and two



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 54

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2−1.
5

−
1

−1

−1

−1

−
0.5

−0.5

−0.5

−0.5

0

0

0 0

0.5

0.5

1

1

1.5

2

(a) α = 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2
00

−1
50

−1
00

−100

−5
0

−50

00

0

0 0

50

(b) α = 102Figure 3.4: MFEM solutions for α = 1, 102 - Test problem 4orders larger, respectively. Noticeably, the potential convergence rate is slightly lowerthan one for α = 10 and h = 1
256

and it approaches O(h
3

2 ) for α = 100 and h = 1
256

.Table 3.16: L2(Dh) error estimates for the u, qx and qy for test problem 4, α = 1

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

8.06E − 03 − 1.77E − 01 − 1.71E − 01 −
1
32

3.35E − 03 1.27 8.91E − 02 0.99 8.55E − 02 1.00
1
64

1.63E − 03 1.04 4.46E − 02 1.00 4.27E − 02 1.00
1

128
8.27E − 04 0.98 2.23E − 02 1.00 2.13E − 02 1.00

1
256

4.19E − 04 0.98 1.12E − 02 1.00 1.07E − 02 1.00Table 3.17: L2(Dh) error estimates for the u, qx and qy for test problem 4, α = 101

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

1.34E − 02 − 1.77E + 00 − 1.73E + 00 −
1
32

4.62E − 03 1.54 8.92E − 01 0.99 8.67E − 01 1.00
1
64

2.22E − 03 1.06 4.47E − 01 1.00 4.33E − 01 1.00
1

128
1.17E − 03 0.93 2.24E − 01 1.00 2.17E − 01 1.00

1
256

6.05E − 04 0.95 1.12E − 01 1.00 1.08E − 01 1.00Solver performances for test problem 4 are reported in Tables 3.19 and 3.20. The



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 55Table 3.18: L2(Dh) error estimates for the u, qx and qy for test problem 4, α = 102

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

1.17E − 01 − 1.77E + 01 − 1.74E + 01 −
1
32

2.90E − 02 2.01 8.94E + 00 0.99 8.69E + 00 1.00
1
64

7.14E − 03 2.02 4.48E + 00 1.00 4.34E + 00 1.00
1

128
1.89E − 03 1.92 2.24E + 00 1.00 2.17E + 00 1.00

1
256

6.60E − 04 1.52 1.12E + 00 1.00 1.09E + 00 1.00results reported in these two tables can be summarised as follows:1. MINRES iteration count for problems with discontinuities is larger (between
30% to 40%) than for continuous problems. The same behaviour is observedfor the exact and approximated versions of preconditioner (2.41);2. It appears that the exact version of p −MINRES is by far the most e�cientsolver for problems with discontinuities. For all other methods considered theCPU time required to either implement the factorisation or construct the coarsegrids signi�cantly penalises the performance of the solvers;3. For all methods the order (governed by α) of the discontinuity has virtually noe�ect on the solvers performance. It appears that for larger α, i.e. sharper vari-ation in the conductivity at the discontinuity, the number of iterations is smallerthan for smaller α, i.e. more homogeneous conditions at the discontinuity;3.2.5 Problem 5: distorted triangular meshIn this section the behaviour of the numerical methods on distorted meshes isassessed. Although the mesh is distorted the �nite element connectivity is regular,i.e. any node has the same number of neighboring nodes. Experiments on irregularconnectivity are not reported in this thesis.



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 56Table 3.19: Iteration count and timings (set-up+solution time) for p −MINRESand PCG - Test problem 4

p−MINRES PCG

h α Nit tCPU Nit tCPU

1
64

α = 102 65 1.23 85 0.97 + 0.87
α = 101 68 1.31 84 0.95 + 0.85
α = 1 68 1.32 83 0.94 + 0.83

1
128

α = 102 65 8.69 165 15.48 + 7.47
α = 101 67 8.77 165 15.27 + 7.62
α = 1 68 9.26 162 15.33 + 7.27

1
256

α = 102 64 44.08 325 240.71 + 73.00
α = 101 67 48.45 323 238.17 + 73.01
α = 1 68 45.95 318 245.11 + 71.28Table 3.20: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 4

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64

α = 102 78 1.33 + 0.75 12 2.12 + 0.16
α = 101 82 1.38 + 0.78 12 2.08 + 0.16
α = 1 83 1.35 + 0.74 12 2.12 + 0.16

1
128

α = 102 79 8.15 + 3.21 12 14.63 + 0.64
α = 101 83 8.08 + 3.36 12 14.76 + 0.58
α = 1 84 8.04 + 3.44 12 15.03 + 0.61

1
256

α = 102 78 102.86 + 20.72 13 278.41 + 3.70
α = 101 85 108.85 + 21.10 13 252.37 + 3.28
α = 1 85 114.45 + 21.39 12 260.69 + 2.93The test problem is taken from Arnold et al. (2005). The analytical solution onthe unit square domain is u = x(1−x)y(1− y). The conductivity coe�cient is a unitscalar. Therefore, (2.1) simpli�es to the Poisson's equation in this case.The distorted mesh is created perturbing the node coordinates of the originalstructured mesh according to

xunst = xst + zhαwhere z is a uniformly distributed random number in the range [−0.5, 0.5] and αregulates the order of the perturbation. Distorted meshes are created at each dis-cretisation level.



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 57An example of structured and unstructured meshes used for this test problem isgiven in Figure 3.5. For the experiments herein considered α = 1.2.
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(b) Distorted meshFigure 3.5: Structured and perturbed triangular �nite element mesh for h = 1
16

- Testproblem 5Discrete error estimates for the structured and unstructured cases are reported inTable 3.22. It appears that the magnitude of the errors and the convergence rate arenot a�ected by the irregular meshing. Hence the potential converges with rate O(h2)and the velocities with rate O(h). It is clear that the mixed method is also suitablefor accurate approximations on distorted meshes.The performance of the solvers is reported in Tables 3.22 and 3.23. The resultsreported in the tables can be summarised as follow:1. Both versions of preconditioned MINRES are h-optimal. For the unstructuredcase the iteration count is slightly larger and some small variations with h arerecorded.2. CG using the incomplete Cholesky factorisation of the coe�cient matrix is not



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 58Table 3.21: L2(Dh) error estimates for the u, qx and qy for test problem 5Structured Meshes
h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

6.32E − 05 − 4.08E − 03 − 4.08E − 03 −
1
32

1.59E − 05 1.99 2.05E − 03 0.99 2.05E − 03 0.99
1
64

3.98E − 06 2.00 1.03E − 03 1.00 1.03E − 03 1.00
1

128
9.97E − 07 2.00 5.13E − 04 1.00 5.13E − 04 1.00

1
256

2.49E − 07 2.00 2.57E − 04 1.00 2.57E − 04 1.00Unstructured Meshes
h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

6.91E − 05 − 4.51E − 03 − 4.90E − 03 −
1
32

1.78E − 05 1.96 2.41E − 03 0.90 2.37E − 03 1.05
1
64

4.30E − 06 2.05 1.16E − 03 1.06 1.16E − 03 1.03
1

128
1.06E − 06 2.02 5.66E − 04 1.03 5.65E − 04 1.04

1
256

2.60E − 07 2.02 2.77E − 04 1.03 2.77E − 04 1.03

h-optimal. Also for this method a larger iteration count is recorded for unstruc-tured meshes.3. The AMG version of CG is h-optimal. As for the other test problems thee�cient performance of CG is penalised by the large CPU cost of creating the
AMG grids;Table 3.22: Iteration count and timings (set-up+solution time) for p −MINRESand PCG - Test problem 5 Structured Meshes

p−MINRES PCG

h Nit tCPU Nit tCPU

1
64

43 0.82 91 0.96 + 0.95
1

128
43 5.43 164 15.01 + 7.83

1
256

43 28.78 310 243.92 + 70.11Unstructured Meshes
p−MINRES PCG

h Nit tCPU Nit tCPU

1
64

52 0.99 97 0.97 + 1.04
1

128
51 6.56 190 15.25 + 9.24

1
256

49 32.68 369 237.46 + 82.39



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 59Table 3.23: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 5 Structured Meshes
p−MINRESAMG PCGAMG

h Nit tCPU Nit tCPU

1
64

48 1.28 + 0.45 9 1.97 + 0.15
1

128
48 8.01 + 2.02 9 13.65 + 0.46

1
256

48 112.57 + 10.81 10 224.68 + 2.63Unstructured Meshes
p−MINRESAMG PCGAMG

h Nit tCPU Nit tCPU

1
64

63 1.62 + 0.66 16 2.56 + 0.30
1

128
61 9.05 + 3.08 16 17.39 + 0.85

1
256

63 112.91 + 15.00 14 277.21 + 3.473.3 Numerical experiments on rectangular meshesIn this section the numerical experiments previously carried out on triangularmeshes are performed on rectangular meshes. It is worthwhile to anticipate that all�ndings highlighted in the previous sections are also valid for rectangular meshes.However, for some test problems, there are some major di�erences with respect tothe triangular case.3.3.1 Problem 1: heterogeneous, isotropic and diagonal CTables 3.24, 3.25 and 3.26 report discrete error estimates for ε = 0.9, 0.99, 0.999,respectively. For the case of small heterogeneity, i.e. ε = 0.9, the solutions con-verge with order larger than second. In fact, the convergence rate for the potentialis O(h2.08) and for the x and y components of the velocity �eld are O(h2.16) and
O(h2.21), respectively. This is signi�cantly di�erent from the convergence rates ob-served on triangular meshes, whereby �rst order convergence was recorded for thevelocity solution (see �3.2.1).Furthermore, for the same level of discretisation, the magnitude of the error po-



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 60tential for the rectangular case is lower than the triangular case. For the velocitysolution this is two orders of magnitude lower.For the case of moderate heterogeneity, i.e. ε = 0.99, larger convergence ratesare recorded for the potential solution, O(h2.28). However the velocities componentsconverge at rates O(h1.02) and O(h1.46), respectively. Although these rates are lowerthan for the case of ε = 0.9, these are signi�cantly better than the triangular case.For the case ε = 0.999 the convergence rates and the magnitude of the error arecomparable to those recorded for the triangular case.Table 3.24: L2(Dh) error estimates for the u, qx and qy for test problem 1, ε = 0.9

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

2.94E − 03 − 1.66E − 01 − 8.34E − 02 −
1
32

6.10E − 04 2.27 3.45E − 02 2.27 9.47E − 03 3.14
1
64

1.49E − 04 2.03 6.87E − 03 2.33 2.96E − 03 1.68
1

128
3.72E − 05 2.00 1.69E − 03 2.03 7.29E − 04 2.02

1
256

9.31E − 06 2.00 4.20E − 04 2.01 1.81E − 04 2.01Table 3.25: L2(Dh) error estimates for the u, qx and qy for test problem 1, ε = 0.99

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

8.57E − 03 − 6.42E − 01 − 1.56E + 00 −
1
32

2.43E − 03 1.82 4.82E − 01 0.41 1.48E + 00 0.07
1
64

5.88E − 04 2.05 3.14E − 01 0.62 1.04E + 00 0.50
1

128
1.06E − 04 2.47 1.47E − 01 1.10 3.64E − 01 1.52

1
256

1.54E − 05 2.78 3.77E − 02 1.96 2.72E − 02 3.74Table 3.26: L2(Dh) error estimates for the u, qx and qy for test problem 1, ε = 0.999

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

9.78E − 03 − 7.11E − 01 − 1.87E + 00 −
1
32

3.18E − 03 1.62 5.98E − 01 0.25 2.18E + 00 < 0
1
64

1.02E − 03 1.64 5.00E − 01 0.26 2.48E + 00 < 0
1

128
3.22E − 04 1.67 4.07E − 01 0.29 2.69E + 00 < 0

1
256

9.50E − 05 1.76 3.15E − 01 0.37 2.67E + 00 0.01The solvers performance is recorded in Table 3.27. The same �ndings summarisedin �3.2.1 for triangular meshes also apply to rectangular meshes. In addition to those



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 61it should be noted that:1. Solvers' CPU timings for the rectangular case are signi�cantly lower than thetriangular case. This is obviously associated with the smaller size of the coe�-cient matrix in the former case. For the same reason the cost of implementingthe Cholesky factorisation is considerably lower;2. p − MINRES iteration count for the rectangular case is comparable to thetriangular case. Although a slightly larger variability is recorded, h-optimalityand C-optimality is preserved;3. In contrast to the MINRES solver, the CG iteration count for the rectangularcase is signi�cantly smaller than the triangular case.Table 3.27: Iteration count and timings (set-up+solution time) for p −MINRESand PCG - Test problem 1

p−MINRES PCG

h ε Nit tCPU Nit tCPU

1
64

ε = 0.999 45 0.65 88 0.55 + 0.62
ε = 0.99 46 0.62 89 0.57 + 0.62
ε = 0.9 44 0.67 97 0.56 + 0.70

1
128

ε = 0.999 45 3.35 170 8.72 + 5.45
ε = 0.99 46 3.31 173 8.66 + 5.48
ε = 0.9 39 2.78 189 8.77 + 5.98

1
256

ε = 0.999 44 15.72 336 132.36 + 50.83
ε = 0.99 45 16.63 337 136.88 + 52.07
ε = 0.9 34 12.29 371 135.56 + 57.25The results for the AMG experiments are reported in Table 3.28. The considerationshighlighted in �3.2.1 regarding Table 3.5 are equally valid for rectangular meshes.Additionally we note that:1. The CPU cost of constructing the AMG grids is signi�cantly lower than thetriangular case. Speci�cally, it is four times smaller for the Schur complementand three times smaller for the MHFEM coe�cient matrix;



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 622. Given the smaller size of the system of equations MINRES and CG CPU costare signi�cantly lower than the triangular case;3. For isotropic coe�cients, the AMG versions of MINRES and CG are e�cientand robust solvers. However, their overall performance is penalised by the CPUcost of creating the AMG grids which is not negligible also for rectangularmeshes.Table 3.28: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 1

p−MINRESAMG PCGAMG

h ε Nit tCPU Nit tCPU

1
64

ε = 0.999 57 0.71 + 0.33 12 0.19 + 0.12
ε = 0.99 56 0.71 + 0.34 13 0.19 + 0.13
ε = 0.9 55 0.66 + 0.30 12 0.19 + 0.13

1
128

ε = 0.999 57 3.18 + 1.05 13 6.55 + 0.43
ε = 0.99 57 3.24 + 1.06 12 6.52 + 0.39
ε = 0.9 57 3.21 + 1.11 13 6.60 + 0.42

1
256

ε = 0.999 59 25.11 + 6.67 13 99.00 + 2.09
ε = 0.99 61 25.21 + 7.11 13 99.13 + 2.09
ε = 0.9 57 25.25 + 6.62 13 98.75 + 2.10

3.3.2 Problem 2: heterogeneous, anisotropic and diagonal CThe settings for this test problem are described in �3.2.2. The error estimates onrectangular meshes are reported in Tables 3.29, 3.30 and 3.31 for α = 10−2, 1, 102.Second order convergence O(h2) is recorded for the potential and velocity solutions.Note that the same convergence rates are obtained for all values of the anisotropiccoe�cient, α. Furthermore the errors are approximately of the same order of magni-tude.As explained for the triangular case, the potential solution for this test problemis always positive and speci�cally it is 0 at the boundaries and 0.0625 at the center ofthe domain, so that 0 < u(x) < 0.0625, ∀x ∈ D. On triangular meshes and for α 6= 1



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 63(see Table 3.28), the numerical solution presents unphysical negative oscillations.According to results shown in Tables 3.29, 3.30 and 3.31, the potential solution doesnot exhibit this erroneous behaviour on rectangular meshes.Table 3.29: L2(Dh) error estimates for the u, qx and qy for test problem 2, α = 10−2

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin

1
16

1.00E − 04 − 1.17E − 04 − 2.40E − 04 − 8.28E − 04
1
32

2.55E − 05 1.97 2.96E − 05 1.99 6.03E − 05 1.99 2.02E − 04
1
64

6.39E − 06 1.99 7.42E − 06 2.00 1.51E − 05 2.00 4.95E − 05
1

128
1.60E − 06 2.00 1.86E − 06 2.00 3.78E − 06 2.00 1.22E − 05

1
256

4.00E − 07 2.00 4.64E − 07 2.00 9.45E − 07 2.00 3.03E − 06Table 3.30: L2(Dh) error estimates for the u, qx and qy for test problem 2, α = 1

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin

1
16

1.46E − 04 − 2.98E − 04 − 2.98E − 04 − 7.69E − 04
1
32

3.70E − 05 1.98 7.50E − 05 1.99 7.50E − 05 1.99 1.82E − 04
1
64

9.29E − 06 1.99 1.88E − 05 2.00 1.88E − 05 2.00 4.37E − 05
1

128
2.32E − 06 2.00 4.70E − 06 2.00 4.70E − 06 2.00 1.06E − 05

1
256

5.81E − 07 2.00 1.17E − 06 2.00 1.17E − 06 2.00 2.60E − 06Table 3.31: L2(Dh) error estimates for the u, qx and qy for test problem 2, α = 102

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin

1
16

6.08E − 04 − 4.91E − 02 − 1.07E − 03 − 5.41E − 04
1
32

1.56E − 04 1.97 1.24E − 02 1.98 2.72E − 04 1.98 1.17E − 04
1
64

3.88E − 05 2.00 3.11E − 03 2.00 6.82E − 05 2.00 2.58E − 05
1

128
9.66E − 06 2.00 7.79E − 04 2.00 1.71E − 05 2.00 5.86E − 06

1
256

2.41E − 06 2.00 1.95E − 04 2.00 4.27E − 06 2.00 1.37E − 06The solvers' computational performance for problem 2 on rectangular meshes ispresented in Table 3.32 and can be summarised as follows:1. As opposed to the experiments carried out on triangular meshes (see Table3.9), preconditioned MINRES is C-optimal when the conductivity coe�cient isdiagonal and anisotropic;



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 642. MINRES performance (in terms of Nit and tCPU) is completely independent ofthe degree of anisotropy;3. CG performance is comparable to the one reported for triangular meshes, i.e.it is neither h nor C optimal;Table 3.32: Iteration count and timings (set-up+solution time) for p −MINRESand PCG - Test problem 2

p−MINRES PCG

h α Nit tCPU Nit tCPU

1
64

α = 102 38 0.65 68 0.57 + 0.49
α = 1 36 0.58 81 0.59 + 0.57

α = 10−2 37 0.58 83 0.56 + 0.59
1

128
α = 102 33 2.54 136 8.82 + 4.35
α = 1 33 2.53 158 8.66 + 4.99

α = 10−2 33 2.56 170 8.65 + 5.35
1

256
α = 102 29 10.51 274 133.96 + 42.05
α = 1 29 10.51 311 135.29 + 47.04

α = 10−2 30 10.78 353 139.34 + 54.00The results for the AMG numerical experiments are reported in Table 3.33. Theoptimality of preconditioned MINRES, previously discussed, is also valid when theSchur complement is approximated by one V-cycle of black-box AMG. In addition tothis, it is evident from Table 3.33 that:1. In contrast to the experiments on triangular meshes, the number of MINRESiterations is approximately constant for α 6= 1. Not surprisingly, for the isotropiccase, Nit is generally lower;2. For α 6= 1, the number of CG iterations varies considerably. This is not thecase for the experiments on triangular meshes (see Table 3.10). Reasons for thedi�erence in performance between triangular and rectangular meshes are givenbelow.



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 65Table 3.33: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 2

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64

α = 102 52 0.77 + 0.35 12 1.27 + 0.13
α = 1 47 0.67 + 0.28 15 1.23 + 0.14

α = 10−2 54 0.73 + 0.33 19 1.24 + 0.17
1

128
α = 102 56 3.73 + 1.23 13 6.15 + 0.54
α = 1 46 3.16 + 0.87 15 6.66 + 0.49

α = 10−2 53 3.36 + 1.04 20 6.62 + 0.62
1

256
α = 102 59 28.74 + 7.25 14 87.01 + 2.62
α = 1 46 25.61 + 5.34 16 100.19 + 2.74

α = 10−2 56 26.48 + 6.30 21 95.46 + 3.37As pointed out in Table 3.33, the number of CG iterations varies considerably for
α 6= 1. This is due to the fact that the coe�cient matrix D is not an M-matrix foranisotropic diagonal tensors and rectangular meshes (Powell 2003). The black-boxAMG code used in this work is set up to work withM-matrices. When this conditionis violated the performance of black-box AMG can deteriorate signi�cantly.For triangular elements with diagonal-anisotropic coe�cients, the Lagrange mul-tiplier system D is always an M-matrix, hence AMG behaviour is not erratic andthe number of CG iterations tends to vary only slightly for α 6= 1 (see Table 3.10).Furthermore, as proved by (Powell 2003), the Schur complement (BABT ), whichis used as preconditioner for MINRES, is always an M-matrix, hence the optimalperformance of the AMG code is always guaranteed.Preconditioned MINRES is C-optimal for diagonal anisotropic conductivity coef-�cients on rectangular meshes due to the structure of the element sti�ness matrix
AK . Powell (2003), Powell & Silvester (2003) showed, in fact, that AK for rectangu-lar elements has diagonal blocks and each block is scaled by a di�erent entry of thecoe�cient C. This is very di�erent from triangular elements where every row of AKis scaled by all entries of the coe�cient C.
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L2(Dh) error estimates for test problem 3 on rectangular meshes are reported inTables 3.34, 3.35 and 3.36 for various values of α.Second order convergence rates for the potential and velocity solutions are alsocon�rmed for problems with full-tensor, anisotropic coe�cients. As for triangularmeshes, the magnitude of the discrete errors increases with larger anisotropic coe�-cients.As for the triangular case negative oscillations for the potential solution are alsorecorded for rectangular elements. Younes & Fontaine (2008a) reported numericalexperiments using the MFEM and MPFA for the same test problem reported in thissection. The authors show numerical results which are largely consistent with theresults reported in Tables 3.34, 3.35 and 3.36, i.e spurious negative oscillations arepresent not only for the anisotropic case but also for the isotropic case. For theisotropic case the spurious oscillations disappear with mesh re�nement, in fact forthe case of h = 1
512

(not shown in Table 3.34) negative oscillations are of the orderof 10−8. Reasons for negative oscillations in the isotropic case are not reported byYounes & Fontaine (2008a) and this matter requires further future investigation.The solvers' performance for test problem 3 on rectangular meshes is reported inTable 3.37. The main �ndings of this table can be summarised as follows:1. As for triangular elements, the performance of MINRES deteriorates signi�-cantly for large values of α;2. Conversely, CG behaves quite di�erently for full tensor coe�cients since theCPU cost seems to decrease with increasing α. Similar results were obtainedfor triangular meshes;3. For α 6= 1 CG outperforms MINRES for all discretisation levels;
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Table 3.34: L2(Dh) error estimates for the u, qx and qy for test problem 3, α = 1

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin umax

1
16

1.25E − 02 − 9.29E − 02 − 9.29E − 02 − −9.29E − 04 8.10E − 01
1
32

3.35E − 03 1.91 2.43E − 02 1.93 2.43E − 02 1.93 −2.34E − 04 9.44E − 01
1
64

8.51E − 04 1.98 6.15E − 03 1.98 6.15E − 03 1.98 −3.71E − 05 9.85E − 01
1

128
2.14E − 04 1.99 1.54E − 03 2.00 1.54E − 03 2.00 −5.09E − 06 9.96E − 01

1
256

5.35E − 05 2.00 3.86E − 04 2.00 3.86E − 04 2.00 −4.21E − 07 9.99E − 01Table 3.35: L2(Dh) error estimates for the u, qx and qy for test problem 3, α = 102

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin umax

1
16

1.73E − 01 − 7.22E + 00 − 7.22E + 00 − −4.92E − 01 2.03E + 00
1
32

4.83E − 02 1.84 1.96E + 00 1.88 1.96E + 00 1.88 −1.20E − 01 1.36E + 00
1
64

1.26E − 02 1.94 5.04E − 01 1.96 5.04E − 01 1.96 −2.71E − 02 1.10E + 00
1

128
3.18E − 03 1.98 1.27E − 01 1.98 1.27E − 01 1.98 −6.62E − 03 1.02E + 00

1
256

7.98E − 04 1.99 3.20E − 02 1.99 3.20E − 02 1.99 −1.60E − 03 1.01E + 00Table 3.36: L2(Dh) error estimates for the u, qx and qy for test problem 3, α = 103

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate umin umax

1
16

1.88E + 00 − 7.30E + 01 − 7.30E + 01 − −5.82E + 00 1.34E + 01
1
32

5.31E − 01 1.83 2.00E + 01 1.87 2.00E + 01 1.87 −2.02E + 00 5.24E + 00
1
64

1.40E − 01 1.93 5.20E + 00 1.94 5.20E + 00 1.94 −4.95E − 01 2.13E + 00
1

128
3.57E − 02 1.97 1.34E + 00 1.96 1.34E + 00 1.96 −1.06E − 01 1.28E + 00

1
256

9.01E − 03 1.99 3.40E − 01 1.97 3.40E − 01 1.97 −2.57E − 02 1.07E + 00



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 68Note that for α = 1, the conductivity coe�cient is equivalent to that of testproblem 2. The only di�erence between the two problems is associated with the right-hand side of the PDE. In such circumstances it is normally expected for MINRES toconverge with approximately the same number of iterations. However, from Table 3.37it is evident that the number of iterations required to solve problem 3 on rectangularmeshes is signi�cantly lower than problem 2. This behaviour is not observed fortriangular meshes.Table 3.37: Iteration count and timings (set-up+solution time) for p −MINRESand PCG - Test problem 3

p−MINRES PCG

h α Nit tCPU Nit tCPU

1
64

α = 103 351 5.07 12 0.57 + 0.13
α = 102 254 3.81 22 0.55 + 0.18
α = 1 22 0.33 79 0.54 + 0.55

1
128

α = 103 466 38.08 14 8.63 + 0.50
α = 102 283 21.82 40 8.64 + 1.29
α = 1 18 1.37 154 8.58 + 4.77

1
256

α = 103 554 204.61 20 133.07 + 3.06
α = 102 300 111.65 77 134.12 + 11.60
α = 1 13 4.76 306 134.98 + 45.43Results for the AMG numerical experiments are reported in Table 3.38. The mostimportant observations for this table can be summarised as follow:1. The MINRES iteration count grows rapidly with increasing α, hence the solutiontimings are quite large. However, given that the CPU cost of constructing thecoarse grids for the AMG approximation is quite cheap on rectangular meshes,

p−MINRESAMG is the better performing solver among all considered;2. The performance of CG is signi�cantly di�erent from the one reported for tri-angular elements. On triangular meshes, although C-optimality is not obtained,CG is h-optimal. On rectangular meshes neither C nor h optimality is estab-lished. This aspect is associated with the violation of the M-matrix condition



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 69for problems with full-tensor coe�cients;Table 3.38: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 3

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64

α = 103 369 0.73 + 2.19 120 2.52 + 1.25
α = 102 267 0.77 + 1.60 39 2.47 + 0.42
α = 1 45 0.66 + 0.26 14 1.20 + 0.14

1
128

α = 103 495 3.52 + 11.27 136 13.61 + 7.66
α = 102 300 3.60 + 6.93 51 13.62 + 2.87
α = 1 42 3.11 + 0.80 15 6.60 + 0.46

1
256

α = 103 601 27.29 + 75.95 207 130.16 + 58.57
α = 102 323 27.35 + 39.92 96 131.03 + 27.39
α = 1 42 25.46 + 4.79 16 97.42 + 2.46

3.3.4 Problem 4: discontinuous, anisotropic and full-tensor CTable 3.39 reports error estimates for α = 1 for test problem 4 on rectangularmeshes. The problem discontinuity causes the loss of one order of magnitude in therate of convergence of both the potential and velocity solutions.Interestingly, whilst the magnitude of the errors for the potential solution arecomparable to those recorded for triangular meshes, the velocity errors tend to beone order of magnitude lower.Error estimates for α = 10 and α = 100, are listed in Tables 3.40 and 3.41.Although �rst order convergence rates are also recorded, the discrete errors tend tobe larger for increasing α.The solvers' performance for test problem 4 on rectangular meshes are reportedin Table 3.42. The results of the experiments for the AMG version of the solvers isgiven in Table 3.43. The main �ndings of these two tables can be summarised asfollows:



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 70Table 3.39: L2(Dh) error estimates for the u, qx and qy for test problem 4, α = 1

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

9.28E − 03 − 3.19E − 02 − 2.81E − 02 −
1
32

4.88E − 03 0.93 1.67E − 02 0.94 1.43E − 02 0.97
1
64

2.50E − 03 0.96 8.55E − 03 0.96 7.26E − 03 0.98
1

128
1.27E − 03 0.98 4.33E − 03 0.98 3.66E − 03 0.99

1
256

6.37E − 04 0.99 2.18E − 03 0.99 1.83E − 03 0.99Table 3.40: L2(Dh) error estimates for the u, qx and qy for test problem 4, α = 101

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

1.67E − 02 − 4.06E − 01 − 3.53E − 01 −
1
32

7.76E − 03 1.10 2.14E − 01 0.93 1.81E − 01 0.96
1
64

3.81E − 03 1.03 1.10E − 01 0.96 9.20E − 02 0.98
1

128
1.90E − 03 1.01 5.57E − 02 0.98 4.64E − 02 0.99

1
256

9.49E − 04 1.00 2.81E − 02 0.99 2.33E − 02 0.99Table 3.41: L2(Dh) error estimates for the u, qx and qy for test problem 4, α = 102

h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

8.18E − 02 − 4.25E + 00 − 3.67E + 00 −
1
32

2.23E − 02 1.88 2.24E + 00 0.92 1.89E + 00 0.96
1
64

6.82E − 03 1.71 1.15E + 00 0.96 9.61E − 01 0.98
1

128
2.52E − 03 1.44 5.84E − 01 0.98 4.84E − 01 0.99

1
256

1.09E − 03 1.20 2.94E − 01 0.99 2.43E − 01 0.991. As for triangular meshes, the MINRES iteration count is larger for discontinuousproblems than for continuous problems (see, for example, test problem 1). Thesame aspect is observed for PCGAMG but not for PCG;2. The degree of the discontinuity does not a�ect the performance of the solvers;3. Hence the exact version of MINRES is the most e�cient solver for this typeof problems. However, it should be noted that the approximated version ofMINRES is also very e�cient given that for rectangular meshes the AMG set-up time is relatively small;For very �ne meshes (problems with d.o.f of the order of 106-107) the CPU cost



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 71of exactly inverting the Schur complement becomes prohibitively expensive. Hence,approximately inverting the Schur complement using AMG should become more ef-�cient in this context. Obviously, this consideration applies to all test problems andnot only to the discontinuous case.Table 3.42: Iteration count and timings (set-up+solution time) for p −MINRESand PCG - Test problem 4

p−MINRES PCG

h α Nit tCPU Nit tCPU

1
64

α = 102 64 0.83 81 0.60 + 0.60
α = 101 66 0.94 80 0.58 + 0.57
α = 1 66 0.92 81 0.56 + 0.59

1
128

α = 102 64 4.64 162 8.60 + 5.26
α = 101 66 4.72 162 8.61 + 5.24
α = 1 66 4.74 163 8.61 + 5.32

1
256

α = 102 63 23.41 328 137.32 + 51.22
α = 101 64 23.48 326 135.34 + 50.45
α = 1 66 24.71 325 134.91 + 50.29Table 3.43: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 4

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64

α = 102 70 0.71 + 0.39 15 1.73 + 0.17
α = 101 71 0.71 + 0.41 15 1.73 + 0.17
α = 1 71 0.69 + 0.42 15 1.73 + 0.17

1
128

α = 102 70 3.31 + 1.41 16 9.48 + 0.66
α = 101 72 3.34 + 1.50 16 9.37 + 0.64
α = 1 71 3.18 + 1.47 15 9.23 + 0.60

1
256

α = 102 70 25.50 + 8.11 17 115.07 + 3.28
α = 101 73 26.26 + 8.98 16 115.35 + 3.10
α = 1 73 26.22 + 8.54 16 115.63 + 3.13

3.3.5 Problem 5: distorted rectangular meshDistortion of rectangular meshes is obtained in a similar fashion to that explainedfor triangular meshes (see �3.2.5 and Figure 3.5). Although the mesh is distortedthe �nite element connectivity is regular, i.e. any node has the same number of



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 72neighboring nodes. Experiments on irregular connectivity are not reported in thisthesis. Discrete error estimates for test problem 5 on structured and unstructuredrectangular meshes are listed in Table 3.44.On structured rectangular meshes the potential and velocity solutions convergewith rate O(h2). This con�rms the results of the previous experiments (excludingdiscontinuous problems where velocities converge with rate O(h)).On distorted rectangular meshes the potential solution retains second order con-vergence. In contrast, the experiments show the loss of one order in the convergencerates of the velocity solutions. Thus the x-component of the velocity converges withrate O(h1.16) and the y-component with rate O(h1.31).The loss of accuracy in velocity solutions obtained by MFEM and MHFEM onquadrilateral meshes is well-known and solutions to this issue have been proposedby Shen (1994), Arnold et al. (2005) and more recently by Younes et al. (2010), forexample.The problem lies in the fact that the Piola transformation of vectorial basis func-tions de�ned on a square reference element to the actual element is not a�ne forquadrilateral elements (Arnold et al. 2005). This causes loss of convergence for theapproximation of the �uxes. The same situation does not occur on triangular ele-ments.The loss of convergence reported in Table 3.44 refers to a simple problem withunit conductivity coe�cient and trivial geometry. Therefore it is expected that thiswould be more severe on problems with general coe�cients and complex geometry.The solvers' performance for test problem 5 on structured and unstructured meshesare reported in Tables 3.45 and 3.46. The �ndings of those tables are summarised asfollows:



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 73Table 3.44: L2(Dh) error estimates for the u, qx and qy for test problem 5Structured Meshes
h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

8.07E − 05 − 2.59E − 04 − 2.59E − 04 −
1
32

2.02E − 05 2.00 6.47E − 05 2.00 6.47E − 05 2.00
1
64

5.04E − 06 2.00 1.62E − 05 2.00 1.62E − 05 2.00
1

128
1.26E − 06 2.00 4.05E − 06 2.00 4.05E − 06 2.00

1
256

3.15E − 07 2.00 1.01E − 06 2.00 1.01E − 06 2.00Unstructured Meshes
h ‖u− uh‖L2 Rate ‖qx − qhx‖L2 Rate ‖qy − qhy‖L2 Rate
1
16

8.54E − 05 − 1.93E − 03 − 2.03E − 03 −
1
32

1.98E − 05 2.11 9.70E − 04 0.99 9.56E − 04 1.09
1
64

5.33E − 06 1.89 4.09E − 04 1.25 4.06E − 04 1.23
1

128
1.30E − 06 2.04 1.81E − 04 1.18 1.77E − 04 1.20

1
256

3.33E − 07 1.96 7.85E − 05 1.21 7.85E − 05 1.171. The MINRES iteration count for problems with unstructured meshes is ap-proximately twice as that for problems with structured meshes when the Schurcomplement is inverted exactly. For the AMG case, instead, the di�erence initeration count is less marked;2. The PCG iteration count also varies only slightly between structured and un-structured meshes. The same can be stated for CG with the AMG precondi-tioner;3. Once again, MINRES with the exact version of preconditioner (2.41) is the bestperforming method.
3.4 ConclusionsThe aim of this chapter was to report results on numerical experiments basedon mixed �nite element methods and compare the approximations with exact solu-tions. This, in addition to investigating MFEM convergence performance, allows the



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 74Table 3.45: Iteration count and timings (set-up+solution time) for p −MINRESand PCG - Test problem 5 Structured Meshes
p−MINRES PCG

h Nit tCPU Nit tCPU

1
64

26 0.33 71 0.58 + 0.52
1

128
23 1.77 133 8.71 + 4.29

1
256

20 7.24 251 137.05 + 39.89Unstructured Meshes
p−MINRES PCG

h Nit tCPU Nit tCPU

1
64

43 0.54 81 0.56 + 0.59
1

128
42 3.12 157 8.75 + 5.19

1
256

40 14.76 279 136.51 + 43.62Table 3.46: Iteration count and timings (set-up+solution time) for p−MINRESAMGand PCGAMG - Test problem 5 Structured Meshes
p−MINRESAMG PCGAMG

h Nit tCPU Nit tCPU

1
64

36 0.68 + 0.27 14 1.26 + 0.14
1

128
36 3.14 + 0.75 15 6.93 + 0.55

1
256

36 25.05 + 4.00 15 96.13 + 2.56Unstructured Meshes
p−MINRESAMG PCGAMG

h Nit tCPU Nit tCPU

1
64

48 0.70 + 0.35 15 2.41 + 0.17
1

128
48 3.16 + 1.15 16 11.74 + 0.75

1
256

48 25.18 + 5.64 18 118.08 + 3.41validation of the codes developed in this work.We have seen that MFEM possesses a second order convergence for the potentialand �rst order convergence for the velocities on structured and unstructured triangu-lar meshes. For discontinuous problems there is a loss of one order of convergence forthe potential solution while the rate of convergence for the velocity solutions is unal-tered. The MFEM possesses second order convergence for the potential and velocitysolutions on structured rectangular meshes. The loss of approximately one order ofconvergence (or more is expected on complex problems) is recorded for unstructured



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 75meshes. For discontinuous problems there is a loss of one order of convergence forboth the potential and velocity approximations.The approximation for the potential tends to have spurious negative values forproblems with diagonal anisotropic and full-tensor anisotropic coe�cients on trian-gular meshes. This also occurs for problems with full-tensor anisotropic coe�cientson rectangular meshes. Furthermore we have seen that, in agreement with resultspresented by other researchers (Younes & Fontaine 2008b,a), spurious negative oscil-lations are present in all cases (isotropic, anisotropic full-tensor) in test problem 3.For the isotropic case the magnitude of the oscillations tend to zero as the mesh isprogressively re�ned.In addition to the error analysis the chapter reports the computational cost ofsolving the inde�nite linear system obtained with MFEM and the symmetric positivede�nite system obtained with MHFEM. Throughout the chapter the focus was onthe robustness of the solvers with respect to the conductivity coe�cient C and thediscretisation parameter h.For problems with isotropic, heterogeneous coe�cients, MINRES using the exactversion of the Schur complement preconditioner is the most e�cient method in termsof CPU cost. This is also valid for problems with anisotropic diagonal tensors butonly on rectangular meshes. In these cases, MINRES is h-optimal and C-optimal.Thus solving the inde�nite system is the cheapest approach to solving the mixedformulation in these special instances.MINRES using the AMG version of the Schur complement preconditioner is alsovery e�cient. Speci�cally, the number of iterations and thus the CPU cost of thesolvers is signi�cantly lower when AMG is used. However, the cost of creating thecoarse grids for the AMG approximation is not negligible either for the Schur comple-ment system or for the Lagrange multiplier system. The last is larger for the Lagrange



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 76multiplier than the Schur complement and larger on triangular meshes than on rect-angular meshes.The performance of the AMG preconditioners is also linked with the M-matrixcondition. The Schur complement is always an M-matrix, hence MINRES using theAMG version of the Schur complement preconditioner will never fail. In contrast, theLagrange multiplier system is anM-matrix only for problems with scalar and diagonalcoe�cients and triangular elements. For general coe�cients and triangular elementsthe M-matrix condition does not hold. Furthermore for rectangular meshes the M-matrix condition does not hold in any circumstance for the SPD system. Hence,using the AMG approximation of the coe�cient matrix as preconditioner for CG onrectangular meshes does not guarantee success and could potentially fail.For general full-tensor coe�cients the results are more di�cult to summarise. Itappears that AMG preconditioners are generally better performing. On rectangularmeshes the Schur complement preconditioner (AMG version) is the cheapest approachamong all those considered. The same applies to triangular meshes on �ne discretisa-tions while the AMG approximation of the Lagrange multiplier system is the cheapeston medium to coarse meshes. However, for the latter case the success of black-boxAMG depends on the extent by which the M-matrix condition is violated. Thus, itsperformance is problem dependent.The results for the test cases presented show that that generally solving the in-de�nite system is cheaper than solving the Lagrange multiplier system. The existingmisconception that tackling the solution of an inde�nite system is a source of troubleshould be reconsidered. This work shows that the choice of the preconditioner forthe iterative scheme is crucial in determining the success of a solver independent ofwhether the system is inde�nite or positive-de�nite.



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 773.5 Relevance for the stochastic modellingThe experiments reported in this chapter and the �ndings associated with thoseare important not only in the context of deterministic modelling of groundwater �owin porous media but also to the stochastic work undertaken in the following chapters.Stochastic modelling of groundwater �ow has been traditionally associated withMonte Carlo methods (MCM). This approach is straightforward and it involves theimplementation of a large number of sequential deterministic simulations from whichstatistics of the numerical solutions can be derived. It is clear that the conclusionsdrawn in this chapter have immediate relevance to Monte Carlo methods since theircomputational performance is directly proportional to the CPU cost of solving theindividual deterministic system.Monte Carlo methods are dealt with only very brie�y in this thesis (see Chapter 5)while most of the attention is dedicated to other stochastic techniques which belongto the wide family of Stochastic Galerkin (SG) methods (see Chapters 4, 6 and 7).Stochastic Galerkin methods require the solution of only one system of equationsthe size of which is considerably larger than deterministic Galerkin methods. As willbe explained in the following chapter the stochastic global system of equations pos-sesses a characteristic block structure. Generally, its solution requires preconditionerswhich e�ciently exploit that structure. An example is the so called mean-based pre-conditioner which uses the the block diagonal components of the global system ofequations.It turns out that any fast deterministic solver can be used to invert the blocks ofthe leading diagonal. Hence the considerations and conclusions of this chapter willbe used to select and investigate e�cient solvers for SG systems.A consideration which is worthwhile anticipating is related with set-up time re-



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 78quired for some of the solvers used in this chapter. It has been repeatedly pointed outthat the cost of factorising or constructing the AMG grids can signi�cantly penalisethe solvers overall CPU cost. For the SG systems, the block diagonal components aregiven by the mean sti�ness matrix weighted by some polynomial basis. Thus, the set-up time for the preconditioner only involves the factorisation or AMG approximationof the mean sti�ness matrix. Crucially this is performed only once.Therefore set-up times become computationally less important in the context ofSG methods when compared to the overall solution time. For MCM, instead, the fac-torisation or AMG approximation has to be computed for every individual simulation,thus contributing signi�cantly to the overall CPU cost.



Chapter 4
Spectral Stochastic Finite ElementTheory
4.1 IntroductionThe �rst part of this thesis has dealt with partial di�erential equations (PDE)in which the input parameters (such as hydraulic conductivity) are considered to beknown with certainty everywhere in the discretised domain. This approach, in whichmodel parameters can be regarded as averaged quantities, is very easy to implementand hence widely used in applications.In the last decade there has been a growing awareness that data used by numeri-cal models are often dominated by uncertainty. In fact, observed data are generallyscarce and this leads to modelling assumptions and data interpretation which are in-trinsically uncertain. In the case of groundwater modelling, material parameters suchas hydraulic conductivity are estimated locally by means of pumping / slug tests or inlaboratories by means of permeameters. Although these measurements are represen-tative only to the speci�c scale at which the test / experiment were undertaken, often79



Chapter 4: Spectral Stochastic Finite Element Theory 80these are extrapolated to larger scales (often of the domain's size). Even though thisis more a necessity than bad practice, driven by the lack of knowledge and scarcityof data, any extrapolation of this kind is dominated by uncertainty. Furthermore itshould also be remembered that the measurements themselves could be a�ected byerrors which should be taken into account in the development of the model.Following these considerations, the idea of quantifying the uncertainty of modelparameters and passing such information to the solution of the PDE has created a vastinterest in the scienti�c community. In such a framework the model input parametersare described as random variables and the PDE is converted to a stochastic partialdi�erential equation (SPDE). When the SPDE is equipped by suitable boundaryconditions, which can also be de�ned as stochastic processes, then its solution is alsoa stochastic process. This method allows one to present model outputs as statisticalquantities, these generally being the �rst (mean) and second (variance) moments ofthe solution.The most widely used approach to the solution of SPDE is the Monte CarloMethod (MCM). This approach is based on constructing an ensemble of realizationsfor the model random input parameters. The PDE is therefore solved for each realiza-tion of the ensemble and statistical quantities are obtained from the set of solutions.This approach is easy and non-intrusive, i.e the method used to discretise the PDEis not modi�ed. Generally, MCM requires a large number of realizations to createmeaningful statistics and therefore can be computationally very expensive. This lim-itation has lead the research community to investigate alternative methods to MCMand / or to �nd ways to improve the performance of MCM.Among the alternative methods is the pioneering work of Ghanem & Spanos (2003)on the classic stochastic �nite element method (SFEM) where the conductivity coe�-cient is described as a Gaussian process. The method was subsequently generalised to



Chapter 4: Spectral Stochastic Finite Element Theory 81other probability distributions in the work of Xiu & Karniadakis (2002b) and analysedby Sudret & Der Kiureghian (2000), Deb et al. (2001), Babu²ka & Chatzipantelidis(2002), Babu²ka et al. (2004), Matthies & Keese (2005). The idea of the SFEM is torestate the SPDE as a variational problem in a similar fashion to traditional FEMformulations. However in this case, in addition to the space of deterministic func-tions, the space of random variables is also de�ned and the solution is sought in theirtensor product space. One crucial aspect of this method is that the deterministicand stochastic spaces are discretised separately. Therefore the conventional �nite el-ement theory and implementations still applies and in general any Galerkin methodcan be used for the discretisation of the deterministic part, so that the SFEM can begeneralised to the stochastic Galerkin method (SG).Similarly to classical FEM, the discretisation of SPDE by SFEM technologiesresults in a single linear system of equations. However, the system is signi�cantlylarger and possesses a characteristic block structure. This aspect of the methodrepresents a fundamental limitation. In fact, the dimension of the problem growsfactorially with the number of random variables used to describe the input spatialrandom �eld. As consequence of this, the solution of high dimensional problemsbecomes computationally infeasible, a phenomenon known as curse of dimensionality.More recent technologies such as stochastic collocation (Babu²ka et al. 2007, Nobileet al. 2008) and multilevel Monte Carlo seem to have overcome this limitation.The idea of multilevel Monte Carlo is to combine the concepts of multigrid tech-nologies with traditional MCM. The acceleration in convergence is guaranteed as mostof the MC simulations are carried out on the set of coarse grids and only a very lim-ited amount of time is performed on the �ner grids. Multilevel MC have been appliedto the solution of ordinary di�erential equations (see Giles (2008), Giles & Water-house (2009)) and PDE (see Graham et al. (2011), Cli�e et al. (2011)). The latter



Chapter 4: Spectral Stochastic Finite Element Theory 82papers clearly show that Multilevel MC methods are incredibly e�cient for problemswith rough coe�cients (i.e spatial random �elds with large variance or / and smallcorrelation lengths). These types of problems, common to radioactive waste disposalapplications, require a large number of random variables (> 100 modes of KarhunenLoève expansion) in probability space to accurately represent the variability of thespatial random �eld. Their solution by SG methods is infeasible due to the curse ofdimensionality, previously mentioned.Despite the essential limitation of the method, SFEM or SG are widely usedfor engineering applications (a review of SFEM / SG engineering implementationsis given by Stafanou (2009)). Equally we aim to show that this method can besuccessfully used in the context of groundwater modelling. Clearly, if for example theconductivity �eld is homogeneous the method can be used without any restrictions.Conversely, if the conductivity �eld is largely heterogeneous, such variability canbe resolved by identifying areas (sub-regions) in which the material parameter has aquasi-homogeneous behaviour (which can be accurately described by a limited numberof random variables). The same idea applies to spatial �elds with small correlationlengths. Practically the model domain is decomposed into many sub-domains andin each sub-domain a spatial random �eld (using for example KLE), with di�erentstatistical parameters, is computed. In this work we follow this approach.Assuming that the conductivity �eld can be accurately represented by a discontin-uous random �eld, other challenges remain for the e�cient implementation of SFEMor / and SG methods. In fact, it is crucial to use e�cient solvers and preconditionersto solve the large stochastic Galerkin systems obtained from these methods.Solution strategies depend on the choice of basis functions for the stochastic space.There are two popular choices. The �rst uses global complete polynomials, com-monly referred to as polynomial chaos, which are orthogonal. This is the classical



Chapter 4: Spectral Stochastic Finite Element Theory 83SFEM approach as outlined in the original work of Ghanem & Spanos (2003). Inthis approach a large and highly structured linear system has to be solved. For thispurpose Krylov subspace iterative solvers are a popular choice. Ghanem & Kruger(1996), Pellissetti & Ghanem (2000) proposed an e�cient implementation of SFEM,without assembling the global sti�ness matrix. They used a block-diagonal precon-ditioner (subsequently referred to as `mean-based preconditioner') for CG based onan incomplete factorisation of the mean sti�ness matrix. Powell & Elman (2009)replaced the incomplete factorisation with a black-box algebraic multigrid (AMG)solver. In Ernst et al. (2009) the implementation of the mean-based preconditionerwas extended to the solution of stochastic mixed �nite element systems (SMFEM).Ullmann (2008) proposed a Kronecker product preconditioner for the stochastic linear(Gaussian / uniform random �elds) and non-linear (lognormal random �eld) cases.The implementation of the Kronecker preconditioner was recently extended to thestochastic mixed �nite element method in Powell & Ullmann (2010). The precondi-tioner reduces signi�cantly the number of iterations of CG and MINRES. However,its implementation is more expensive than mean-based preconditioners. A review ofa large number of iterative solvers, including one-level iterative methods, multigridmethods and multilevel methods (for the stochastic discretisation) has been recentlyreported by Rossell & Vandewalle (2010).The other choice uses global tensor product polynomials (Babu²ka et al. 2004).This implementation has the attractive advantage of allowing for the decoupling of theglobal Galerkin system. However, as pointed out by Ullmann (2008), this is restrictedto problems in which the conductivity coe�cient is approximated by normal or uni-form random �elds. There is no evidence that for the case in which the conductivity�eld is approximated by a lognormal random �eld (a very common assumption in thegroundwater modelling community) the global Galerkin system can be decoupled.



Chapter 4: Spectral Stochastic Finite Element Theory 84Furthermore, it has the disadvantage that the size of the stochastic space grows morerapidly than in the complete case. Solution strategies for this choice are reviewedby Ullmann (2008) and involves iterative solvers based on Krylov subspace recyclingtechniques.In this work we consider the classic SG (SFEM / SMFEM) methods based on com-plete orthogonal polynomials. Whilst the mixed method was extensively discussed inChapters 2 and 3, the standard Galerkin method (FEM) was not treated. Reasonsfor this include the fact that its deterministic implementation has already been ex-tensively studied and there are limitations associated with the lack of �ux continuity(see Chapter 2 for further discussion). Nonetheless the stochastic implementationof standard Galerkin methods is relatively recent and it is currently a very activeresearch area despite the aforementioned �ux limitation. Therefore the discussionconcerning stochastic numerical methods in groundwater �ow problems reported inthe following chapters focuses on both standard Galerkin and mixed �nite elementmethods.The methodology for the primal and mixed formulations (linear case) is reportedin detail in the following sections. The derivation of the global Galerkin system isdescribed and solution strategies that take full advantage of its characteristic blockstructure are proposed.Chapter 5 compares numerical results for SG with those obtained by traditionalMCM for a selection of test problems. This chapter is only intended to validatethe SG implementation against a method which is purely based on the deterministicimplementations of FEM and MFEM. The chapter does not report a thorough com-putational comparison of the two methods, in view of the new developments withinthe �eld of multilevel Monte Carlo methods.Numerical results for the SG methods, linear case, are reported in Chapter 6



Chapter 4: Spectral Stochastic Finite Element Theory 85for a selection of test problems. Not only the performance of CG equipped with amean-based preconditioner is recorded but also using the proposed block Gauss-Seidelpreconditioner. The latter can also be implemented as a stand alone solver, hence itsperformance in those settings is also evaluated. The chapter terminates by reportingthe performance of preconditioned MINRES on the same set of test problems.The non-linear case is dealt with in Chapter 7. The theory partly deferring fromthe linear case is summarised in the initial sections. Similarly to Chapter 6, we �rstreport the solvers performance for the primal formulation followed by results for themixed formulation. The test problems used are similar to those described in Chapter6. However, in this case the conductivity is approximated by a lognormal �eld.The numerical implementation of the stochastic Galerkin methods has been codedby the author within the MATLAB environment and the computations are all per-formed in serial. The development of the same algorithms in a parallel architectureis matter for future work and development. The derivation of the polynomial chaosbasis was obtained explicitly using the MATLAB symbolic toolbox in a similar man-ner to that explained in Ghanem & Spanos (2003). The discretization of spatialrandom �elds using Karhunen Loève expansion method was possible adapting someMATLAB-based functions provided by Sudret & Der Kiureghian (2000).4.2 The mathematical modelThe steady-state �ow of water in porous media, whose material parameters areassumed to be unknown, is described by a scalar second-order stochastic partial dif-ferential equation (SPDE). In the context of groundwater �ow modelling the mostuncertain parameter is the hydraulic conductivity. If it is not a function of the spatialvariable x, the conductivity coe�cient can be represented by a set of uncorrelated ran-



Chapter 4: Spectral Stochastic Finite Element Theory 86dom variables (white noise approach) Ci(ω), i = 1, . . . , ND, where ND is the numberof subdomains having di�erent hydraulic properties. Alternatively, the conductiv-ity coe�cient C(x, ω) is a spatial random �eld such that for a �xed spatial location
x ∈ D, C(·, ω) is a random variable and for a �xed realization ω ∈ Ω, C(x, ·) is aspatial �eld.Let D be a domain in Rd, where d = 2, 3, bounded by Γ = ΓD ∪ ΓN , as de�nedfor the deterministic problem (see �2.2). Let Ω be the set of random events thattogether with the minimal σ-algebra, =, and the probability measure, Pr, denotesthe probability space (Ω,=, P r). We seek a random �eld solution (u(x, ω) ∈ D × Ω)to the second-order elliptic problem

−∇ · C(x, ω)∇u(x, ω) = f(x) in D × Ω,

u(x, ω) = g(x) on ΓD × Ω,

C(x, ω)∇u(x, ω) · n = 0 on ΓN × Ω,

(4.1)
where n denotes the unit outward normal vector to ΓN , g(x) represents the deter-ministic prescribed constant head on ΓD and f(x) represents a deterministic sourceor sink term. Note that f(x) and g(x) could also be (spatial) random functions.The solution to Problem (4.1) gives the mean potential or pressure head u andthe associated standard deviation, everywhere in D. As in the deterministic case, thepotential can be used to derive the �uid discharge (�ux) or Darcian velocity q usingDarcy's Law. The limitations of this approach are highlighted in �2.2 and these applyequally to the stochastic formulation.A more suitable approach which allows us to derive accurate approximations forthe �uxes, is obtained by restating Problem (4.1) by explicitly introducing Darcy's



Chapter 4: Spectral Stochastic Finite Element Theory 87Law and seeking the solution (u(x, ω),q(x, ω)) ∈ D × Ω of the problem
C−1(x, ω)q(x, ω) +∇u(x, ω) = 0 in D × Ω,

∇ · q(x, ω) = f(x) in D × Ω,

u(x, ω) = g(x) on ΓD × Ω,

q(x, ω) · n = 0 on ΓN × Ω.

(4.2)
The solution to problem (4.2) gives the mean potential (or pressure) and normal �uxesand their associated standard deviations, everywhere in D. Problems (4.1) and (4.2)can be solved using stochastic Galerkin (SG) methods (Ghanem & Spanos 2003, Xiu& Karniadakis 2002b). In these methods the deterministic and stochastic spaces arediscretised separately. Traditional Galerkin methods are used for the approximationof the deterministic space and a polynomial chaos expansion (PCE) is employed forthe stochastic space. Hence, the theoretical de�nitions presented in Chapter 2 applyalso to the following discussion.4.3 Hydraulic Conductivity Coe�cient Approxima-tionIn this thesis we use two approaches to represent the conductivity coe�cient. The�rst approach, herein referred to as coloured noise, assumes that the conductivitycoe�cient varies randomly from one point of D to another point according to agiven correlation function. Given the advantages discussed by Ghanem & Spanos(2003), Powell & Elman (2009), Deb et al. (2001), Matthies & Keese (2005) we usethe Karhunen-Loève expansion (KLE) to approximate continuous and discontinuousspatial random �elds.The second approach, herein referred to as white noise, assumes that the conduc-



Chapter 4: Spectral Stochastic Finite Element Theory 88tivity coe�cient varies randomly and independently from one point of D to another.Although the hydraulic conductivity is spatially correlated it is common practice inapplications to represent it by piecewise constant subdomains with each subdomainpossessing hydraulic properties pertaining to a speci�c hydro-geological unit.Since the white noise approach assumes spatial independence, thus making ittheoretically unsuitable to approximate parameters such as hydraulic conductivity,it has been rarely used in the research community. In fact the literature is rich onthe implementation of SG techniques using KLE methods (see Xiu & Karniadakis(2002a), Ghanem & Dham (1998)).Coloured Noise. The conductivity �eld C(x, ω), is approximated by a truncatedKarhunen-Loève expansion (Loève 1977)
C(x, ω) ≈ Ch

d (x, ξ(ω)) = µ(x) + σ

d
∑

i=1

√

λiξiβi(x), (4.3)where βi(x) and λi are the eigenfunctions and eigenvalues of the covariance functionand are obtained from the solution of the eigenvalue problem
∫

D

ρ(x,x′)βi(x
′)dDx′ = λiβi(x), i = 1, . . . ,∞, (4.4)

ξi are random variables, µ(x) and σ are the mean and the standard deviation of
C(x, ω), respectively. ρ(·, ·) is the correlation function of the spatial random �eld C.When the conductivity coe�cient C(·, ω) is assumed to be a Gaussian process, therandom variables ξi in (4.3) are normally distributed. In these circumstances therandom variables have the desirable property of being uncorrelated and independent.However this also makes problems (4.1) and (4.2) ill-posed since the di�usion coe�-cient is not bounded below and above by positive constants (Powell & Elman 2009).In fact, it is well known that the conductivity �eld is required to be strictly positiveand bounded, i.e.

0 < k1 ≤ C(x, ω) ≤ k2 < +∞. (4.5)



Chapter 4: Spectral Stochastic Finite Element Theory 89Although Gaussian functions possess an in�nite spectrum, it can be shown that well-de�ned discrete solutions can be obtained if a relatively small variance is used .Alternatively, condition (4.5) can be satis�ed by transforming the Gaussian ran-dom �eld into a lognormal one by expanding the d-terms of the KLE into the polyno-mial chaos of order less than or equal to p. This procedure was proposed by severalauthors (see Ghanem & Spanos (2003), Sudret & Der Kiureghian (2000)). However,this implementation has some important drawbacks. For example, the coe�cient ma-trix arising from the discretisation of (4.1) and (4.2) using lognormal random �eldsbecomes block dense and ill-conditioned, which makes the linear system very di�cultto solve.Xiu & Karniadakis (2002a) have used uniform random variables, hence ensuringthat Ch
d (x, ω) is bounded between two positive values with probability 1. A conse-quence of this approach is that the random variables in (4.3) are not guaranteed tobe independent, thus this condition needs to be assumed explicitly (Xiu & Karni-adakis 2002b). Other distributions, such as the Gamma and Beta distributions, canbe employed. In this thesis we use random variables which are assumed to be eitheruniformly or normally distributed. A separate discussion is provided for lognormaldistributions.Di�erent statistical parameters can be assigned to di�erent regions of D, thusre�ecting the diverse hydraulic behaviour of natural deposits. We perform a coarsesubdomain decomposition of D and de�ne a continuous random �eld for each Dk,

k = 1, . . . , ND, such that
Ch
D(x, ξ(ω)) =

ND
⋃

k=1

Ch
Dk

(x, ξ(ω)),where ND is the number of sub-domains in D. Now, each sub-domain Dk, whichmay be of irregular shape, is enclosed by a rectangular-shaped domain D′

k such that,
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Dk ⊂ D

′

k, for k = 1, . . . , ND. The `�ctional' domain D′

k can be the smallest rectangleenclosing Dk or can be larger than Dk. A Karhunen-Loève expansion is implementedfor each sub-domain Dk but the eigenvalue problem (4.4) is solved with respect to
D

′

k. The hydraulic conductivity discontinuous random �eld is de�ned as
Ch(x, ξ(ω)) =

ND
⋃

k=1

[

µk(x) + σk

dk
∑

i=1

√

λikξ
i
kβ

i
k(x)

]

. (4.6)When the exponential correlation function and a square / rectangular domain areconsidered, there exists closed form solutions to the eigenvalue problem (4.4) (Ghanem& Spanos 2003). In this thesis we make full use of the closed form solutions, thus onlyrandom �elds whose correlation function is of exponential or square-exponential typeare considered. Examples in which the eigenvalue problem is solved numerically canbe found in Lu & Zhang (2007) and description of numerical algorithms are reportedin Ghanem & Spanos (2003). Note that in such cases the computational cost ofsolving the eigenproblem (4.4) needs to be evaluated.White Noise. The white noise approach is often used to approximate parameterssuch as rainfall or groundwater recharge which (generally) do not show strong spatialcorrelation. Although the hydraulic conductivity is a function of x, in practice a verycomplex spatial distribution can always be reduced to a (�nite) set of subdomainswith constant parameter values.From a mathematical point of view the white noise approach has signi�cant ad-vantages with respect to KLE based approaches. We will see in the next sections thatthe linear systems obtained with this approach have a (favourable) block-tridiagonalstructure (Constantine 2009). Hence, block diagonal preconditioners can be e�cientlyused to solve these problems.The conductivity �eld can be de�ned as follow
C(·, ξ) =

ND
⋃

i=1

ki(ξ). (4.7)



Chapter 4: Spectral Stochastic Finite Element Theory 91where ki(ξ), i = 1, . . . , ND, is a set of random variables. These could be normally oruniformly distributed (other distributions are also possible). For the case in which
ki(ξ) are uniformly distributed, these have the form

k(ξ) =
ξ (k2 − k1) + (k2 + k1)

2
, ξ ∼ U [−1, 1] (4.8)where k1 and k2 are de�ned as in (4.5) and ξ are uniform random variables de�nedin the interval [−1, 1].Depending on the choice of random variables the basis functions of the probabilityspace are chosen so that they are orthogonal with respect to the probability measureassociated with the random variables. For example, in the case of uniform randomvariables, the basis functions are univariate Legendre polynomials (for the case inwhich the KLE is implemented, the basis functions are multi-dimensional Legendrepolynomials). If normal random variables are used the basis comprises univariateor multivariate Hermite polynomials depending on the approach that is used to ap-proximate the conductivity �eld. A list of Wiener-Chaos polynomial bases and theunderlying random variables (including their support) is given in Xiu & Karniadakis(2002b,a).4.4 The weak formulationThe weak formulation of problem (4.1) is given by Powell & Elman (2009), whilethat for the mixed formulation (4.2) is given by Furnival (2008). We brie�y summarisethis derivation in the following sub-sections. Although the treatment is somewhattechnical, this is needed for a complete presentation of the topic.Before stating the weak formulation of problems (4.1) and (4.2), some considera-tions regarding random variables are required. Suppose that X is a random variable



Chapter 4: Spectral Stochastic Finite Element Theory 92de�ned in (Ω,=, P r) and denoting the density function by fX(x), we can express themathematical expectation as
〈X〉 =

∫

Ω

XdP =

∫

R

xfX(x)dx. (4.9)Similarly, for a �nite set of random variables {ξ1, . . . , ξd} ∈ Ω, we can de�ne a function
g(y), so that

〈g(ξ)〉 =
∫

Ω

g(ξ)dP =

∫

Ξd

g(y)fg(ξ)(y)dy, (4.10)where fg(ξ)(y) is the joint probability density function of the random variables, Ξ ⊂ R,and y ∈ R
d.4.4.1 Primal FormulationThe weak formulation of the primal variational problem is: �nd u ∈ W such that

〈a(u, w)〉 = 〈L(w)〉, ∀w ∈ W (4.11)where
〈a(u, w)〉 =

∫

Ω

[
∫

D

K(x, ξ)∇u(x, ξ) · ∇w(x, ξ)dD
]

dP,

〈L(w)〉 =

∫

Ω

[
∫

D

f(x)w(x, ξ)dD

]

dP.

(4.12)The solution space W is the tensor product space
W = H1

0 (D)⊗ L2(Ω), (4.13)where the subspace H1
0 (D) is de�ned

H1
0 (D) = {w : w ∈ H1(D) and w = 0 on Γ}, (4.14)and

H1(D) = {w : w ∈ L2(D) and ∂w
∂xi

∈ L2(D), i = 1, . . . , d},

L2(D) = {w : w is de�ned on D and ∫
D

w2dD <∞},

L2(Ω) = {w : w is de�ned on Ω and ∫
Ω

w2dΩ <∞}.

(4.15)



Chapter 4: Spectral Stochastic Finite Element Theory 93The Lax-Milgram lemma can be used to prove that there exists a unique solution tothis problem provided that condition (4.5) is satis�ed.4.4.2 Mixed FormulationThe weak formulation of the mixed variational problem is: �nd (u,q) ∈ V ×W

〈a(q,v)〉+ 〈b(v, u)〉 = 〈(g,n · v)ΓD
〉, ∀v ∈ V

〈b(q, w)〉 = −〈(f, w)〉, ∀w ∈ W

(4.16)where
〈a(q,v)〉 =

∫

Ω

[
∫

D

1

K(x, ξ)
q(x, ξ) · v(x, ξ)dD

]

dP,

〈b(v, w)〉 =

∫

Ω

[
∫

D

∇ · v(x, ξ)w(x, ξ)dD
]

dP,

〈(g,n · v)ΓD
〉 =

∫

Ω

[
∫

ΓD

g(x)(n · v(x, ξ))dD
]

dP,

〈(f, w)〉 =

∫

Ω

[
∫

D

f(x)w(x, ξ)dD

]

dP.

(4.17)
The solution spaces W = L2(D) ⊗ L2(Ω), where L2(D) and L2(Ω) are de�ned in(4.15). The solution space V is the tensor product space

V = {v(x, ξ) ∈ H(div;D)⊗ L2(Ω) : v(x, ξ) · n = 0 on ΓN × Ω}, (4.18)where, given the vector function v = {v1, . . . , vd},
H(div;D) = {v : v ∈ L2(D)d, and ∇ · v ∈ L2(D)}, (4.19)and L2(D)d is the Hilbert space

L2(D)d = {v : vi ∈ L2(D), i = 1, . . . , d}. (4.20)There exists a unique solution to this problem providing that the bilinear forms arecontinuous and coercive and the inf-sup inequality is satis�ed (see Brezzi & Fortin



Chapter 4: Spectral Stochastic Finite Element Theory 94(1991)). Furthermore condition (4.5) needs to be satis�ed, i.e.
0 <

1

k1
≤ 1

K(x, ω)
≤ 1

k2
< +∞. (4.21)4.5 Stochastic Finite Element ApproximationThe implementation of the spectral stochastic �nite element method (SSFEM) forproblem (4.1) involves the separate discretisation of the deterministic and stochas-tic spaces. The deterministic space H1

0 (D) is discretised by means of polynomialsde�ning the classical �nite element basis functions φi(x), i = 1, . . . , Nu, where Nu isthe number of �nite element nodes. These basis functions are piecewise linear on apartition Zh of D de�ned by triangular �nite elements 4i, i = 1, . . . , Ne, such that,
Zh =

Ne
⋃

i=1

4i,where Ne denotes the number of �nite elements. Here h denotes the discretisationparameter and describes the size of the �nite elements in Zh. Let Eh be the collectionof numbered edges (D = 2), ei, i = 1, . . . , Nedg, where Nedg is the total number ofedges in Zh.The stochastic space L2(Ω) is discretised by means of polynomial chaos of orderless than or equal to p in d random variables ξi. According to the Galerkin methodwe de�ne the �nite dimensional subspaces Sh ⊂ H1
0 (D) and T h ⊂ L2(Ω) such that

W h = Sh⊗T h ⊂W = H1
0 (D)⊗L2(Ω). The discrete variational formulation of (4.11)is: Find uh ∈ W h such that

〈a(uh, wh)〉 = 〈L(wh)〉. ∀wh ∈ W h (4.22)



Chapter 4: Spectral Stochastic Finite Element Theory 954.5.1 Polynomial ChaosThe basis for subspace T h contains multidimensional polynomials of degree lessthan or equal to p, T h = span{χi, . . . , χP} where
P =

(d+ p)!

d!p!
, (4.23)and d represents the number of random variables (number of terms retained in theKLE expansion). The polynomial chaos basis is chosen so that the following orthog-onality condition is satis�ed

〈χiχj〉 = 〈χi〉2δi,j. (4.24)In this thesis the probability measure corresponds to that of either a d-dimensionaluniform distribution or d-dimensional normal distribution. Hence, the basis for T hconsists of d-dimensional Legendre or Hermite polynomials. Note that the one-dimensional case is a special form of these larger spaces.Legendre PolynomialsMultidimensional Legendre polynomials are de�ned as products of univariate Leg-endre polynomials, {Li(ξj)}, i = 0, . . . , p and j = 1, . . . , d. Let us associate to eachbasis function {χi}, i = 1, . . . , P , a multi-index α = α(i,j), where the componentsrepresent the degree of the univariate polynomials {Li(ξj)}. For example, given theunivariate Legendre polynomials of degree less than or equal to 3, we have
L0(ξ) = 1 L1(ξ) = ξ L2(ξ) =

1

2

(

3ξ2 − 1
)

L3(ξ) =
1

2

(

5ξ3 − 3ξ
)

, (4.25)and considering two-dimensional polynomials, i.e. d = 2, we have the indices αk,
k = 1, . . . , 10

α1 = α(0,0) α2 = α(1,0) α3 = α(0,1) α4 = α(2,0) α5 = α(1,1)

α6 = α(0,2) α7 = α(3,0) α8 = α(2,1) α9 = α(1,2) α10 = α(0,3).(4.26)
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, . . . , χα10

} are
χα1

= 1 χα2
= ξ1 χα3

= ξ2

χα4
= 1

2
(3ξ21 − 1) χα5

= ξ1ξ2 χα6
= 1

2
(3ξ22 − 1)

χα7
= 1

2
(5ξ31 − 3ξ1) χα8

= 1
2
(3ξ21 − 1)ξ2 χα9

= 1
2
ξ1(3ξ

2
2 − 1)

χα10
= 1

2
(5ξ32 − 3ξ2) . (4.27)Hermite PolynomialsSimilarly, multidimensional Hermite polynomials are obtained as a product ofunivariate Hermite polynomials, {Hi(ξj)}, i = 0, . . . , p and j = 1, . . . , d. Followingthe previous example, the univariate Hermite polynomials of degree less than or equalto 3 are given by

H0(ξ) = 1 H1(ξ) = ξ H2(ξ) = ξ2 − 1 H3(ξ) = ξ3 − 3ξ. (4.28)Considering the indices (4.26), the basis functions for the stochastic space T h aregiven by
χα1

= 1 χα2
= ξ1 χα3

= ξ2

χα4
= ξ21 − 1 χα5

= ξ1ξ2 χα6
= ξ22 − 1

χα7
= ξ31 − 3ξ1 χα8

= ξ2(ξ
2
1 − 1) χα9

= ξ1(ξ
2
2 − 1)

χα10
= ξ32 − 3ξ2.

(4.29)
4.5.2 Linear SystemTo obtain the discrete linear system associated with the weak formulation (4.22)the potential uh is approximated by

uh(x, ξ) =

P
∑

s=1

Nu
∑

r=1

ur,sφr(x)χs(ξ). (4.30)



Chapter 4: Spectral Stochastic Finite Element Theory 97Substituting uh using expansion (4.30) in (4.22) we obtain the linear system of equa-tions
Au = f , (4.31)where A is a sparse matrix of size NuP ×NuP with a block-structure

A =





















A1,1 A1,2 · · · A1,P

A2,1 A2,2 · · · A2,P... ... . . . ...
AP,1 AP,2 · · · AP,P





















, (4.32)
and

p = [p1,p2, . . . ,pP ]
T
, f = [f1, f2, . . . , fP ]

T
. (4.33)The block structure of A has been described by other authors (see Powell & Elman(2009), for example). We include a brief description for completeness. Consider thecase p = 2 and d = 3, then P = 10. The structure of A for this example is illustratedin Figure 4.1.
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nz = 3570(b) Sparsity pattern of AFigure 4.1: Block structure of the global sti�ness matrix A for the second orderproblem



Chapter 4: Spectral Stochastic Finite Element Theory 98The diagonal blocks A∗ (red squares) are de�ned as products of the mean sti�nessmatrix, K0, and 〈χi〉2 so that the ith diagonal block, A∗
i,i, is

A∗
i,i = 〈χi〉2 ⊗K0, i = 1, . . . , P, (4.34)where
(K0)r,s =

∫

D

µ∇φr(x)∇φs(x)dx, (4.35)and µ denotes the mean value of the conductivity �eld C(x, ξ).The o�-diagonal blocks A?
i,j , i 6= j, are products of the sti�ness matrices, Kl, withthe coe�cients of the polynomial chaos expansion, ci,j,l = 〈ξlχiχj〉, i, j = 1, . . . , Pand l = 1, . . . , d

A?
i,j =

d
∑

l=1

[〈ξlχiχj〉]⊗Kl, (4.36)where
(Kl)r,s = σ

√

λl

∫

D

βl(x)∇φr(x)∇φs(x)dx. (4.37)The coe�cient matrix A can be expressed in matrix notation. Following Powell &Elman (2009) we have
A = G0 ⊗K0 +

d
∑

k=1

Gk ⊗Kk (4.38)Note that in Figure 4.1a di�erent colours are assigned to di�erent blocks of A. Eachcolour represents the tensor product operation of a stochastic matrix Gk with Kk,
k = 0, . . . , d.It is evident that the sparsity of the global stochastic coe�cient matrix A isgoverned by the coe�cients of the polynomial chaos expansion. The sparsity of theblocks of A is determined by the sparsity of the deterministic �nite element sti�nessmatrix. Figure 4.1b shows the sparsity of A for the case in which h = 1

4
.For the case where the conductivity coe�cient is approximated by (4.8), the basisfor T h consists of one-dimensional Legendre polynomials of degree less than or equal



Chapter 4: Spectral Stochastic Finite Element Theory 99to p. In this particular case A has size Nup×Nup and has the following (tridiagonal)structure,
A =





























A∗
1 A?

2

A?
2 A∗

2 A?
3. . . . . . . . .

A?
p−1 A∗

p−1 A?
p

A?
p A∗

p





























. (4.39)
The diagonal blocks A∗ are given by (4.34) and the o� diagonal blocks A? takethe form

A?
i,j = 〈kχiχj〉 ⊗K, (4.40)where

K(r, s) =

∫

D

∇φr(x)∇φs(x)d(x), (4.41)and k is as de�ned in (4.7).4.5.3 Implementation and Solution StrategiesThe global coe�cient matrix A is never fully assembled. In fact, its dimensiongrows quickly with the order of the polynomial basis p and the number of randomvariables d making its full assembling unfeasible from a memory point of view. Asoriginally observed by Ghanem & Kruger (1996), it is necessary to store d+1 matricesof size Nu × Nu corresponding to Kk, k = 0, ..., d, in (4.38) and the non-zero entriesof the stochastic matrices Gk. Depending on the size of the problem these can bestored either on RAM or disk.The discrete linear system can be solved by the conjugate gradient method CG.However, most often a preconditioner, P, is required to increase the e�ciency of thesolver. The earlier attempts of Ghanem & Kruger (1996) and Pellissetti & Ghanem



Chapter 4: Spectral Stochastic Finite Element Theory 100(2000) involved incomplete factorization schemes for the diagonal blocks of A. Usingthe notation of �4.5.2, we can de�ne the block-diagonal preconditioner Pbdiag and themean preconditioner Pmean as
Pbdiag = G0 ⊗K0, Pmean = I ⊗K0. (4.42)At each CG iteration the computation of P−1r is required, where r is the residualvector. This operation involves the solution of P sub-systems of equations (withinthe action of the preconditioner) of size Nu ×Nu with coe�cient matrix K0.As pointed out by Powell & Elman (2009) any e�cient deterministic solver canbe used for the solution of the P sub-systems. These authors proposed the use ofone V-cycle of black-box algebraic multigrid (AMG). The crucial advantage of usingblack-box AMG is that the computational cost of one V-cycle of AMG is linearlyproportional to the discretisation parameter h.It is observed (see Powell & Elman (2009)) that, when Gaussian random variablesare employed, the preconditioned system is positive de�nite only when the varianceand the order of the polynomials is small. This is a consequence of the in�nite supportof the Gaussian distribution and the violation of condition (4.5) for the conductivitycoe�cient. Preconditioned CG breaks down when this criteria is violated. Therefore,the use of Hermite polynomials is limited to problems with small variances. Uniformdistributions, however, have �nite support and condition (4.5) can be easily satis�ed.For the SFEM method to be computationally e�cient and competitive with re-spect to traditional sampling methods, the CG method needs to be equipped withrobust preconditioners which are optimal with respect to h, d, p and especially C.It is well known that the performance of preconditioners (4.42) (see the numericalexperiments presented in Chapter 6) deteriorates for problems in which C has a largestandard deviation. This is due to the fact that the o�-diagonal blocks of A be-



Chapter 4: Spectral Stochastic Finite Element Theory 101come increasingly important (for large variances) and they are not included in thepreconditioner, P.To overcome this important limitation a new preconditioner which fully exploitsthe block structure of A is proposed. At each CG iteration the computation of P−1rinvolves all blocks of the coe�cient matrix A. This is achieved by adding an internalloop to the preconditioning operation which essentially implements a full inversion ofthe global sti�ness matrix A using a block symmetric Gauss-Seidel algorithm. Thepreconditioner, which to the author's knowledge has not been used in the SFEMcontext before, takes the form,
PbSGS ≈ G0 ⊗K0 +

d
∑

k=1

Gk ⊗Kk. (4.43)However, the preconditioner PbSGS is neither assembled nor inverted directly. Anexample should make this process more clear. Let us consider the case in which d = 2and p = 2. The global sti�ness matrix takes the form
A =

































A1,1 A1,2 A1,3 0 0 0

A2,1 A2,2 0 A2,4 A2,5 0

A3,1 0 A3,3 0 A3,5 A3,6

0 A4,2 0 A4,4 0 0

0 A5,2 A5,3 0 A5,5 0

0 0 A6,3 0 0 A6,6


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



























.

At each CG iteration, we iterate over k = 1, 2, 3, . . . and progressively solve thesystem of equations block by block for z1, z2, . . . , z6, as follows
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


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


















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


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, (4.44)where z0 is an initial guess and r is the residual vector obtained at each CG iteration.The terms at the (k − 1)th level are known from the previous iteration and hencethey become part of the right hand side of the system of equations. The k terms



Chapter 4: Spectral Stochastic Finite Element Theory 102are obtained successively by solving P sub-problems of size Nu × Nu using eitherUMFPACK or one V-cycle of AMG or any fast solver for the deterministic problemunder consideration.The internal Gauss-Seidel iteration has to be symmetric to be used as a precondi-tioner for CG. Hence the forward sweep illustrated in (4.5.3) needs to be followed bya backward sweep. Hence for each iteration of the Gauss-Seidel algorithm, one sweepin each direction is required to guarantee the symmetry of the preconditioner for CG.Two stopping criteria are used for the proposed algorithm. Ideally the iterativemethod stops when
‖ zk − zk−1 ‖∞< εwhere ε = 10−8. Alternatively, when a maximum number of iterations maxitb isachieved the current approximation for z is the preconditioned residual needed withinthe current CG iteration.The algorithm used in the numerical experiments reported in Chapters 6 and7 is given below. Algorithm 1 shows the forward sweep and 2 the backward one.When Gauss-Seidel is used as a preconditioner for CG both sweeps are used and theconvergence test is carried out only at the end of the backward sweep. Note that inthe presented algorithm we have used the non-zero blocks of A as input in order tosimplify its description. However in the actual implementation the blocks of A arecomputed every time. In fact, only d + 1 (K0 and Kk) sti�ness matrices and thestochastic matrices Gk are stored.In general, this algorithm should decrease the number of CG iterations and, inparticular, it should improve the iteration count for those problems for which theo�-diagonal blocks of A are important, i.e. problems in which the spatial random�eld has a large standard deviation.



Chapter 4: Spectral Stochastic Finite Element Theory 103Algorithm 1 Gauss-Seidel forward sweepinput: Ai,j , i = j = 1, . . . , P {Non-zero blocks of A}input: ri, i = 1, . . . , P {CG residual vector}repeatinput: zj, j = 1, . . . , P {Initial guess}for i = 1 to P dofor j = 1 to i− 1 do
rhsi = ri −Ai,jz

k
jend forfor j = i+ 1 to P do

rhsi = ri −Ai,jz
k−1
jend for

Ai,iz
k = rhsi {Solve with UMFPACK or one V-cycle of AMG code}end foruntil convergence or maxitb is reachedAlgorithm 2 Gauss-Seidel backward sweepinput: zkj , j = 1, . . . , P {Vector obtained from forward sweep}for i = P to 1 dofor j = 1 to i− 1 do

rhsi = ri − Ai,jz
k
jend forfor j = i+ 1 to P do

rhsi = ri − Ai,jz
k+1
jend for

Ai,iz
k+1 = rhsi {Solve with UMFPACK or one V-cycle of AMG code}end for



Chapter 4: Spectral Stochastic Finite Element Theory 104On the other hand, it is clear from the presented algorithm that the number ofmatrix-vector operations increases signi�cantly. Thus, to improve the computationalcost of the solution process we seek a substantial reduction in the number of CGiterations with the aid of a small number of internal Gauss Seidel iterations.The performance of PbSGS and its comparison with mean-based preconditioners(4.42) is reported in Chapters 6 and 7.4.6 Stochastic Mixed Finite Element ApproximationThe approach to SMFEM is similar to the one presented in the previous section.However, the mixed �nite element approximation requires the de�nition of subspacesfor H(div;D) in addition to L2(D). In this we consider the Raviart-Thomas spaceof lowest order RT0 as a suitable space for the approximation of the velocity solutionand M0(K) is de�ned to be the space of piecewise constant functions. These arede�ned in �2.5.1.As previously presented (see �4.5.1), the stochastic space L2(Ω) is discretisedby means of polynomial chaos. The spaces for the stochastic approximation areconsequently given by V h = Y h⊗T h ⊂ V = H(div;D)⊗L2(Ω) andW h = Xh⊗T h ⊂

W = L2(D)⊗ L2(Ω).The discrete variational formulation of (4.16) is: �nd qh ∈ V h and uh ∈ W h suchthat
〈a(qh,vh)〉+ 〈b(vh, uh)〉 = 〈(g,n · v)ΓD

〉, ∀vh(x, ξ) ∈ V h

〈b(qh, wh)〉 = −〈(f, wh)〉. ∀wh(x, ξ) ∈ W h

(4.45)



Chapter 4: Spectral Stochastic Finite Element Theory 1054.6.1 Linear SystemThe potential uh and �ux (or velocity) qh are expressed in terms of the expansions
uh(x, ξ) =

P
∑

s=1

Ne
∑

r=1

us,rφr(x)χs(ξ), qh(x, ξ) =

P
∑

s=1

Nedg
∑

r=1

qs,rψr(x)χs(ξ). (4.46)Substituting for uh and qh using expansions (4.46) into (4.45), we obtain the discretelinear system
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, (4.47)where A is a sparse symmetric matrix of size NedgP × NedgP with block structureand B is an unsymmetric sparse matrix of size NeP × NedgP with block diagonalstructure. For the example in which p = 3 and d = 2, the block structure of C, where

C =


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

A BT

B 0






is illustrated in Figure 4.2a.
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Chapter 4: Spectral Stochastic Finite Element Theory 106corresponds to the sparsity of the deterministic velocity matrix and the deterministicdivergence operator. For the case of h = 1
4
the sparsity of C is illustrated in Figure4.2b.The diagonal blocks A∗ are products of the mean velocity matrix, K0, and 〈χ2

i 〉

A∗
i,i = 〈χi〉2 ⊗K0, (4.48)where

(K0)r,s =

∫

D

1

µ
ψr(x)ψs(x)dx. (4.49)The o�-diagonal blocks A? are given by

A?
i,j =

d
∑

l=1

[〈ξlχiχj〉]⊗Kl, (4.50)where
(Kl)r,s = σ

√

λl

∫

D

βl(x)ψr(x)ψs(x)dx. (4.51)The block diagonal matrix B is given by
Bi,i = 〈χi〉2 ⊗B0, (4.52)where

B0(r, s) =

∫

D

φr(x)∇ · ψs(x)d(x). (4.53)When the conductivity coe�cient is approximated by (4.8), A reduces to size
Nedgp × Nedgp and has a tridiagonal structure and B reduces to size Nep × Nedgp.Then, C has the following structure
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The diagonal blocks A∗ are given by (4.34) and the o�-diagonal blocks A? havethe form

A? = 〈kkχk
i χ

k
j 〉 ⊗K, (4.55)where

K(r, s) =

∫

D

ψr(x)ψs(x)d(x), (4.56)and k is as de�ned in (4.8).4.6.2 Implementation and Solution StrategiesAs for the SFEM method the coe�cient matrix C =
[

A BT

B 0

] is never assembled.In addition to storing d+1matrices of size Nedg×Nedg and the entries of the stochasticmatrices Gk, we also store the matrix B0 of size Ne ×Nedg.The e�cient solution of the saddle-point system (4.47) is an active �eld of research(see Furnival (2008), Ernst et al. (2009) and Elman et al. (2010)). Our approach fol-lows from our understanding of the deterministic system (see �2.5.3). In Chapter 3 weused MINRES equipped with a practical preconditioner based on the approximationof the Schur complement by sparse direct or algebraic multigrid methods.For the stochastic system we use a preconditioner which follows from its deter-ministic version (2.41) and it is given by
P =







Ñ 0

0 Ṽ






, (4.57)where

Ñ = diag(A) = G0 ⊗ diag(K0), (4.58)and
Ṽ = BÑ−1BT = G0 ⊗

[

B0diag(K0)
−1BT

0

]

. (4.59)



Chapter 4: Spectral Stochastic Finite Element Theory 108Following the discussion for the second order problem carried out in �4.5.3, thepreconditioner (4.57) is expected to be e�cient only for problems in which the spatialrandom �eld is characterised by small or moderate standard deviation. The factis that, to date, a robust preconditioner in terms of σ, for the mixed stochasticformulation has not yet been proposed.Due to the structure of C, the new developments reported in �4.5.3 are not equallyapplicable to the �rst order problem. The stochastic version of the mixed-hybridmethod could provide the solution to this drawback. This is discussed further in thenext sections.4.7 Stochastic Mixed Hybrid FormulationWe have seen that, in the deterministic case, the inde�nite discrete linear systemobtained by mixed methods can be reduced to a positive de�nite system of equations.The success of the hybridization technique relies on the fact that the matrix A isdiagonal, hence the computation of A−1 is cheap. Furthermore, the Schur complement
BA−1BT and its inverse are also diagonal and e�ciently computed. The resultingmatrix D is sparse and positive de�nite.The stochastic global system of the mixed hybrid method has a similar form tothe one associated with the deterministic counterpart (2.49). However, the globalmatrix A is now a block matrix whose sparsity is governed by the coe�cients ofthe polynomial chaos expansion. Note that each block of A is diagonal. Its blockstructure is shown in Figure 4.3(a) for the case of d = 3 and p = 2. Its sparsitypattern is shown in Figure 4.3(b).The global stochastic matrices B = 〈χi〉2 ⊗ B0 and C = 〈χi〉2 ⊗ C0, i = 1, . . . , P ,where B0 and C0 are the corresponding deterministic global matrices, are block diag-



Chapter 4: Spectral Stochastic Finite Element Theory 109onal. Their block structure and sparsity pattern is also shown in Figure 4.3(a) andFigure 4.3(b).
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Chapter 4: Spectral Stochastic Finite Element Theory 111appears that all the blocks of the coe�cient matrix need to be stored in contrast tothe other implementations. In the SFEM and SMFEM implementations only d + 1matrices and the entries of the stochastic matrices Gk need to be stored. It seems thatthe same implementation is not possible for the SMHFEM, due to the post-processingwith which D is ultimately obtained. The memory required to store a large numberof matrices represents a signi�cant limitation of this method.In this thesis we do not present numerical simulations for the stochastic version ofthe mixed-hybrid �nite element method. The two challenges mentioned above have tobe evaluated carefully to understand if the implementation of this method is feasible.This topic requires further research.



Chapter 5
A Comparison of Stochastic Galerkinand Monte Carlo Methods
5.1 IntroductionThe aim of this chapter is to compare the solutions obtained by means of StochasticGalerkin methods (SFEM / SMFEM) with those obtained by traditional Monte Carlomethods (MCM). The comparison of solutions give us the possibility to validate theSG numerical development. For the Monte Carlo simulations we use the deterministicmixed method which was validated in Chapter 3 using test problems with knownanalytical solutions. Therefore, the statistics obtained by sequential deterministicsimulations (MCM) represent a suitable data-set against which to validate the resultsobtained with SG methods.It should be noted that the numerical solutions for the test problems presented inthis chapter (see �5.2 and �5.3) using SG and MCM do not `exactly' converge to theresults but some (small) di�erences are expected. The primary objective is to showthat the numerical examples produce physically meaningful and comparable results.112



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 113In addition to validation purposes the chapter also includes a convergence anal-ysis for the two methods. Speci�cally, we consider the methods to have convergedif there is no signi�cant change in the solution for progressively larger polynomialorders (SFEM / SMFEM cases) and number of simulations (MCM case). Ideally,the methods are considered to have converged if the �rst four signi�cant digits of thesolutions do not vary with increasing polynomial order p and number of simulations
Nr. Although, this analysis could be considered subjective, it is our aim to highlightthe di�erent convergence rates of the two methodologies.For each of the test problems presented in this chapter the performance asso-ciated with both methodologies is reported. Although a robust comparison of thecomputational cost required by the two methods is feasible, this is outside the scopeof this thesis. In fact the numerical codes implemented in this work are prototypesand still under development. A formal comparison between MCM and SG requiresstate-of-the-art algorithms and solvers and therefore this is an objective for futurework. The timings listed in the tables should only give the reader an indication of theCPU cost required by that speci�c method. The simulations have all been carried outin serial within the MATLAB 7.4 on a laptop PC with 4Gb of RAM. A comparisonof CPU performance for the numerical experiments based on parallel implementationalgorithms is not considered in this thesis.Additionally, it should be borne in mind that for the MCM the time requiredto create Nr spatial random �eld realizations can be very large and in some cir-cumstances greater than the actual solution time. However, it is recognized that thiscomputational time depends largely on the algorithm and method chosen to discretizethe random �eld. Therefore, this CPU cost is omitted from the MCM timings re-ported in the tables. The timings reported for the SG simulations are total times andthey also include the CPU cost required to discretise the spatial random �elds.



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 114Two test problems are considered in this chapter aimed at validating the SGimplementation based on Gaussian and uniform distributions. The test problemsalso address the methods convergence behaviour for various settings. In particularwe look at cases with mixed boundary conditions and small and large variances. Acomparison of MCM and SG methods for test problems in which the conductivitycoe�cient is modelled by lognormal distributions is reported in Chapter 7.The author would like to acknowledge the use of some of the MATLAB-basedfunctions made available by Sudret & Der Kiureghian (2000) for the experimentscarried out in this chapter.5.2 SFEM vs Monte Carlo SimulationsFor the SFEM the conjugate gradient method, preconditioned with PbSGS basedon (UMFPACK ), is used (see �4.5.3). For the MC method a sparse direct solver(UMFPACK ) is used. This is a suitable choice given that the mesh used in thefollowing experiments is relatively coarse (h = 1
32
).5.2.1 Test Problem 1 - Hermite polynomialsThis test problem is taken from Deb et al. (2001). We consider the square domain

[−0.5, 0.5] × [−0.5, 0.5] and source term f(x, y) = 2(0.5 − x2 − y2). The stochasticsystem of equations to be solved is given in (4.1) with homogeneous Dirichlet bound-ary conditions de�ned everywhere in Γ. The problem is solved on a regular triangularmesh with discretization parameter h = 1
32
.The spatial variability of the conductivity coe�cient Ch(x, ξ(ω)) is described byan exponential correlation function in which the correlation lengths are lx = ly = 1.0.The spatial random �eld is assumed to be normally distributed with µ = 1 and
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σ = 0.1. The eigenvalues and eigenfunctions of the Karhunen-Loève expansion of
C are available as analytical expressions (Ghanem & Spanos 2003, Powell & Elman2009). These can be expressed as the products of those of two corresponding 1Dproblems. Closed form solutions to the eigenvalue problems are given in Ghanem& Spanos (2003). Note that closed form solutions are only available for the casesin which the covariance function is exponential / square exponential or triangularand for squared or rectangular domains. Figure 5.1a shows the decay of the �rst 10eigenvalues obtained from the KLE as well as their summation. Figure 5.1b illustratesa realization of the conductivity �eld for test problem 1.
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Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 116of the deterministic problem corresponds to the number of nodes, Nu = 1, 089. Table5.1 reports the overall number of equations solved using MCM and the dimension ofthe stochastic space and global sti�ness matrix obtained using SFEM.Table 5.1: Dimension of MCM and SFEM for test problem 1

Nr 10, 000 20, 000 40, 000

MCM#eq. 10, 890, 000 21, 780, 000 43, 560, 000
p 2 3 4

P 28 84 210
SFEM#eq. 30, 492 91, 476 228, 690The mean and variance solutions for the potential obtained using SFEM (with

d = 6 and p = 4) on a 32× 32 uniform grid are shown in Figure 5.2.
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Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 118Table 5.2: Convergence analysis of MCM and SFEM for test problem 1

Nr = 10, 000 20, 000 Nr = 40, 000Sample Mean 0.062915 0.062928 0.062904Sample Variance 0.000023290 0.000023257 0.000022881
tCPU(sec.) 15.82 31.64 63.29

p = 2 p = 3 p = 4Mean 0.062855 0.062856 0.062856Variance 0.000023348 0.000023377 0.000023378
tCPU(sec.) 0.39 1.54 3.96should be kept in mind that more e�cient algorithms could be developed for bothmethodologies, providing di�erent time estimates. Therefore, the timings reportedserve as an indication of e�ciency only and do not provide a robust comparisonbetween the two methodologies. Furthermore, it should be noted that the lineargrowth in CPU time reported for the MCM is not observed for the SFEM. In fact,for the latter method the dimension of the stochastic discrete linear system increasesfactorially with the maximum order, p, of the polynomials used to discretise thestochastic space.5.2.2 Test Problem 2 - Legendre polynomialsThe second test problem is similar to the one presented in Powell & Elman (2009).We consider the square domain [0.0, 1.0] × [0.0, 1.0] with source term f(x, y) = 1.Dirichlet boundary conditions are imposed on the left and right edge of the squaredomain such that ΓD = {0, 1} × [0, 1]. Homogeneous Neumann boundary conditionsare imposed on the upper and lower edge of the domain so that the �ow is tangentto these boundaries. The system of equation de�ned in (4.1) is solved on a regulartriangular mesh with discretization parameter h = 1

32
.The spatial model for Ch(x, ξ(ω)) is the same as the one described for test problem

1. However for this test problem we set the standard deviation to σ = 0.7.



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 119In this test problem random normal variables cannot be employed because whena large standard deviation is deployed the discrete linear system and preconditionedsystem become inde�nite. In fact it can be shown that when Hermite polynomials areused, the positive de�niteness of the coe�cient matrix is never guaranteed. (Powell& Elman 2009) showed that when Hermite polynomials are used, for �xed values of
h, d and σ there is always a value of p that determines the coe�cient matrix A to beinde�nite. Furthermore the author showed that for small values of σ the link between
A being SPD and the order of the Hermite polynomials p is not evident.Thus, given that in this test problem σ is large, normal distributions cannot beused. Therefore, independent and uniformly distributed random variables, de�ned inthe interval (−1, 1), are used. Hence the basis functions for the stochastic space are
d-variate Legendre polynomials of order less than or equal to p. Let us set d = 4(four random variables) and use polynomials up to order eight. The spatial domain isdiscretised by the same triangulation described in test problem 2. Table 5.3 reportsthe overall number of equations solved using MCM and the dimension of the stochasticspace and global sti�ness matrix obtained using SFEM.Table 5.3: Dimension of MCM and SFEM for test problem 2

Nr 10, 000 20, 000 40, 000 80, 000

MCM#eq. 10, 890, 000 21, 780, 000 43, 560, 000 87, 120, 000
p 5 6 7 8

P 126 210 330 495
SFEM#eq. 137, 214 228, 690 359, 370 539, 055The mean and variance solutions for the potential obtained using SFEM with

p = 8 and d = 4 on a 32× 32 uniform grid are illustrated in Figure 5.4.Figure 5.5 shows the mean and variance solution pro�les along the horizontalcentreline of the domain for several values of polynomial order p and number of MCsimulations Nr. As for test problem 1 the solution pro�les obtained by the two
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(b) Variance u solutionFigure 5.4: Mean and variance solutions for the potential for test problem 2methods are very similar and converge to the same values for increasing samplingsize, Nr, and polynomial order, p.
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Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 121Table 5.4 shows the value of the mean and variance at location (0.5, 0.5) for severalvalues of Nr and p. Legendre polynomials of order four (not shown in Table 5.4) aresu�cient to achieve convergence to the fourth signi�cant digit for the mean solution.Polynomials of order seven, instead, are required for the variance solution to achievethe same level of accuracy. Hence, not surprisingly, the �rst moment solution alwaysconverges more rapidly than the second moment solution, no matter how large thevariability of the spatial random �eld is.For random �elds with large variance the Monte Carlo method converges veryslowly. Table 5.4 shows that 40, 000 simulations are required for the sample mean toconverge. Furthermore, the maximum size of the sample used in this study (Nr =

80, 000) is not su�cient to achieve convergence for the variance solution.Table 5.4: Convergence analysis of MCM and SFEM for test problem 2

Nr = 10, 000 Nr = 20, 000 Nr = 40, 000 Nr = 80, 000Sample Mean 0.64132 0.64087 0.64072 0.64070Sample Variance 0.0075964 0.0075244 0.0075556 0.007530
tCPU(sec.) 25.70 51.40 102.80 205.61

p = 5 p = 6 p = 7 p = 8Mean 0.64114 0.64115 0.64115 0.64115Variance 0.0077580 0.0077639 0.0077650 0.0077653
tCPU(sec.) 5.40 13.26 19.78 21.54The CPU times reported in Table 5.4 indicate that the SFEM method is signif-icantly more e�cient than the MCM when large standard deviations and Legendrepolynomials are used. Although the results presented in test problems 1 and 2 arenot directly comparable, SFEM using Legendre polynomials is generally more e�-cient than using Hermite polynomials. Furthermore, in the latter case the positivede�niteness of the coe�cient matrix is guaranteed only when the standard deviationand polynomial order are not too large. Thus it would not be possible to obtain asolution for test problem 2 if Hermite polynomials were used.



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 1225.3 SMFEM vs Monte Carlo SimulationsFor the SMFEM and for each MC simulation, MINRES equipped with a Schurcomplement preconditioner based on AMG is used (see �2.5.3 and �4.6.2). For thedeterministic case this choice is motivated by the outcomes of Chapter 3. For thestochastic problem instead this is the most e�cient and practical preconditioner cur-rently available.5.3.1 Test Problem 1 - Hermite polynomialsThe settings for this test problem are described in �5.2.1.The solution of the stochastic mixed formulation provides, in addition to themean and variance of the potential, the mean and variance of the two componentsof the velocity �eld. In fact, as explained in Chapter 2, simultaneous solutions areobtained for the potential, at the centroid of the �nite elements and for the normal�uxes at the edges of the triangulation. Thus, the size of the deterministic problemcorresponds to the sum of the number of elements, Ne = 2, 048, and number of edges,
Nedg = 3, 136. Table 5.5 reports the overall number of equations solved using MCMand the dimension of the stochastic space and global sti�ness matrix obtained usingSMFEM. Table 5.5: Dimension of MCM and SMFEM for test problem 1

Nr 10, 000 20, 000 40, 000

MCM#eq. 51, 840, 000 103, 680, 000 207, 360, 000
p 2 3 4

P 28 84 210
SFEM#eq. 145, 512 435, 456 1, 088, 640The mean and variance for the potential solution are similar to those obtainedusing SFEM and they are illustrated in Figure 5.1. The mean and variance solutions



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 123for the two components of the velocity �eld obtained using SMFEM (with d = 6 and
p = 4) on a 32× 32 uniform grid are shown in Figure 5.6.
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32The mean and variance pro�les for the X component of the velocity �eld alongthe horizontal centreline of the domain for several values of polynomial orders p andnumber of MC simulations Nr are illustrated in Figure 5.8. The pro�les for the Y



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 124component along the vertical centreline are also illustrated in the same �gure. As forthe second order problem the mean and variance of the velocity �eld for the MCMand SMFEM converge to the same solution for increasing sampling size, Nr, andpolynomial order, p.
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(−0.5, 0.0) and (0.0,−0.5) for several values of Nr and p, for the X-component and
Y -component of the velocity �eld, respectively.The SMFEM converges at the same rates reported for the SFEM case, i.e. poly-nomials of order two are su�cient for the mean velocity solutions and polynomialsof order three are required for the variance velocity solutions to achieve accuracyto the fourth signi�cant digit. Note also that the qx and qy solutions are perfectlysymmetric.The Monte Carlo mean solution of the velocity �eld converges rapidly and itappears that 10, 000 simulations are su�cient to achieve convergence. However, thevariance solution for the velocity components converges slowly and it appears to benot symmetric (see Table 5.6 and Figure 5.5). Consequently, the rate of convergencefor the X and Y velocity components di�er, slightly. Results presented in Table 5.6indicate that 20, 000 simulations are su�cient to achieve convergence to the thirdsigni�cant digit for qy. However, 40, 000 simulations or more are required to achievethe same level of accuracy for qx.Table 5.6: Convergence analysis of MCM and SMFEM for test problem 1

Nr = 10, 000 Nr = 20, 000 Nr = 40, 000

qx
Sample Mean −0.24694 −0.24699 −0.24692Sample Variance 0.000043008 0.000043567 0.000043320

qy
Sample Mean −0.24706 −0.24696 −0.24694Sample Variance 0.000042770 0.000042982 0.000042947
tCPU(sec.) 2, 023 4, 046 8, 092

p = 2 p = 3 p = 4

qx
Mean −0.24688 −0.24688 −0.24688Variance 0.000042547 0.000042584 0.000042585

qy
Mean −0.24688 −0.24688 −0.24688Variance 0.000042547 0.000042584 0.000042585

tCPU(sec.) 11.02 44.77 160.82The CPU cost per simulation is signi�cantly more expensive for the �rst than forthe second order problem. In a stochastic context, where several thousand simulations



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 126are required, the MC method becomes computationally very expensive. This is clearfrom Table 5.6, where the reported data show that more than two hours are requiredto solve 40, 000 linear systems of equations on a relatively coarse grid (h = 1
32
). Itshould be noted that in real life applications the size of the sample will be signi�cantlylarger than the one considered in this test problem.On the other hand, the SMFEM is signi�cantly more e�cient. Note, however, thatthis conclusion cannot be generalized as the random �eld used in this test problemhas a low standard deviation. The next example shows that the SMFEM solutiontime increases signi�cantly for problems with larger standard deviations.5.3.2 Test Problem 2 - variable σThe settings for this test problem are described in �6.2.2.Table 5.7 reports the overall number of equations solved using the MC methodfor test problem 2. The table also includes the dimension of the stochastic space andthe global sti�ness matrix obtained using SMFEM.Table 5.7: Dimension of MCM and SMFEM for test problem 2

Nr 10, 000 20, 000 40, 000 80, 000

MCM#eq. 51, 840, 000 103, 680, 000 207, 360, 000 414, 720, 000
p 5 6 7 8

P 126 210 330 495
SFEM#eq. 653, 184 1, 088, 640 1, 710, 720 2, 566, 080The mean and variance solution for the potential are very similar to those obtainedwith the second order problem and these are illustrated in Figure 5.4. The mean andvariance solutions for the components of the velocity �eld for d = 4 and p = 8 on a

32 × 32 uniform grid are shown in Figure 5.8. Note that for this test problem the�ow is predominantly from left to right, hence the Y -component of the velocity �eldis equal or close to zero and therefore it is omitted from Figure 5.8.



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 127Figure 5.8 also includes the solution pro�les for various order of Legendre polyno-mials p and various Monte Carlo samples, Nr. For the mean velocity (X-component)solution the pro�le presented is along the direction Y = 0.5 and for the variance so-lution is along the direction X = 0.5. An in-depth convergence study for a samplingpoint having coordinate (0.5, 0.5) is reported in Table 5.8.
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Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 128Legendre polynomials of order four (not shown in Table 5.8) are su�cient toachieve convergence to the fourth signi�cant digit for the mean solution. Polynomialsof order six, instead, are required for the variance solution to achieve the same levelof accuracy. This is in agreement with the convergence rate of the mean and variancesolution for the potential recorded for the second order problem (see Table 5.4).Noticeably it is apparent from the data presented in Table 5.8 that the MonteCarlo mean solution for the X component of the velocity �eld does not convergefor the sample size considered in this test problem. This is somewhat discordantif compared with the convergence rate of the potential solution for the �rst (notshown in Table 5.8) and second order problem (see Table 5.4). Equally the variancesolution does not converge for the maximum sample size herein considered. However,convergence to the third signi�cant digit is achieved for just 10, 000 simulations.Table 5.8: Convergence analysis of MCM and SMFEM for test problem 2

Nr = 10, 000 Nr = 20, 000 Nr = 40, 000 Nr = 80, 000

qx
Sample Mean 1.12083 1.12182 1.11799 1.11835Sample Variance 0.16755 0.16756 0.16777 0.16795
tCPU(sec.) 1, 437 2, 874 5, 748 11, 496

p = 5 p = 6 p = 7 p = 8

qx
Mean 1.12517 1.12516 1.12515 1.12515Variance 0.17491 0.17488 0.17489 0.17489

tCPU(sec.) 374.67 605.13 1, 649.94 2, 331.29The data on computational performance reported in Table 5.8 reveal that theperformance of the solver used for the SMFEM deteriorates signi�cantly for problemsin which the spatial random �eld possesses a large standard deviation. This aspect isextensively covered in �4.6.2 and �4.5.3 and is the focus of the discussion in Chapter6.



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 1295.4 ConclusionsThe primary objective of this chapter was to validate the numerical results ob-tained using Stochastic Galerkin methods with those obtained by traditional MonteCarlo methods.We have shown that good agreement between the two methods has been achievedfor problems in which the conductivity coe�cient is described by Gaussian and uni-form distributions. A similar analysis is carried out in Chapter 7 for problems withlognormal distributions. Other types of distributions such as Gamma or Beta are notconsidered in this thesis for they are less relevant for application in the groundwatermodelling context.In addition to our validation work, the chapter also reported an in-depth conver-gence analysis of SFEM/SMFEM and MCM. The main �ndings of this analysis aresummarised as follows.Generally, low order polynomials (up to fourth order for large standard deviation)are su�cient to achieve mean solution convergence to the fourth signi�cant digitfor Stochastic Galerkin methods. Conversely, the variance solution converges moreslowly and higher order polynomials are generally required (up to seventh order forlarge standard deviation).Monte Carlo methods show slow convergence rates even when the spatial random�eld is characterised by a small standard deviation. The numerical experiments sug-gest that for the variance solutions to converge a very large sample of realisations isgenerally required.It is evident that the Monte Carlo method is computationally very expensive. Infact, for a speci�c problem the overall number of equations to be solved can be verylarge depending on the number of realisations considered. In comparison, the number



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 130of equations to be solved in a stochastic Galerkin implementation is typically just afraction of that.Nevertheless, the e�cient use of SG methods is limited to problems where theconductivity coe�cient is accurately approximated by a small number of randomvariables. This class of problems arises when the correlation lengths of the spatialmodel are of the same size as the physical domain or larger. In these circumstancesthe eigenvalues of the KLE decay rapidly, thus a small number of random variablesare su�cient to accurately approximate the random �eld. For cases in which thecorrelation lengths of the spatial �eld are small and thus a large number of randomvariables need to be considered, the implementation of SG becomes impracticable.Furthermore, we have shown that for problems in which the spatial random �eldis characterised by a large standard deviation, the performance of the solvers used forthe SG methods deteriorates signi�cantly. The preconditioners used are, in fact, notrobust for this class of problems. It is therefore crucial that, in order for SG methodsto be computationally competitive in all settings (small and large standard deviation),the chosen iterative solvers are equipped with robust and e�cient preconditioners.This is the focus of the next chapters where the performance of newly proposed andpopular preconditioners is analysed in depth.



Chapter 6
Solution Strategies for StochasticGalerkin Methods - Linear StochasticCase
6.1 IntroductionThe scope of this chapter is to review the state-of-the-art solvers for the discretelinear systems obtained from the Stochastic Galerkin methods presented in Chapter4. Similar studies have been carried out by other researchers, see for example Rossellet al. (2008), Furnival (2008), Powell & Elman (2009), Ernst et al. (2009), Elmanet al. (2010) and Rossell & Vandewalle (2010).We study the e�ciency of the conjugate gradient (CG) and minimal residual(MINRES ) solvers when equipped with preconditioners proposed in �4.5.3 and �4.6.2.Additionally for the stochastic primal formulation (second order problem) we also lookat the performance of Gauss-Seidel solvers.As for the deterministic case, we emphasize the conditions for which h and C-131



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 132optimality are achieved. Note that the conductivity coe�cient depends on the statis-tical parameters µ and σ and the number of terms in the Karhunen-Loéve expansion,
d, (see �4.3). Hence, ideally we seek a solver which is optimal with respect to allof these parameters. All the test cases reported in this chapter and Chapter 7 arebased on �nite element discretisations with regular connectivity, i.e. any node of the�nite element mesh has the same number of neighboring nodes. Experiments aimedat assessing solver's performance on �nite element meshes with irregular connectivityare not reported in this thesis.Additionally, the size of the stochastic space (and hence the size of the discreteproblem) depends on the highest order of the polynomial basis p. Hence a solverwhich is also p-optimal possesses a very favourable property.The algorithms used for the numerical experiments follow the implementation ini-tially proposed by Ghanem & Kruger (1996) whereby the linear system is never fullyassembled. Only the non-zero entries of the polynomial chaos coe�cients (appropri-ately indexed) and d + 1 matrices (associated with the discretisation of the spatialrandom �eld) are stored. Hence all the non-zero blocks of A are computed again atevery iteration. Certainly the non-zero blocks of A could be stored but this wouldcause further memory and computational limitations on the implementation of SGmethods.The �rst section concerns the solution of SFEM discrete linear systems. Overalltwelve di�erent methods are analysed some of which di�er only in the solver usedto invert the diagonal blocks of the coe�cient matrix. In particular, we use: anincomplete Cholesky factorisation of K0, using the MATLAB cholinc function with
droptol = 10−4 (initially proposed by Pellissetti & Ghanem (2000)); a black-box solverbased on AMG (initially proposed by Powell & Elman (2009)) and a sparse directsolver, namely UMFPACK.



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 133The algebraic multigrid uses the MATLAB implementation of the HSL_MI20library (Boyle et al. 2007, 2009). A symmetric Gauss-Seidel algorithm is used assmoother to remove the high frequency components of the error vector. An alternativechoice is damped Jacobi. However, no simulations are carried out using this smoother.The second section proposes suitable preconditioners for the solution of the stochas-tic version of the mixed problem. We only analyse the e�ciency of a mean-basedpreconditioner which uses either UMFPACK or AMG to invert the Schur comple-ment. Other preconditioners such as the Kronecker product preconditioner and theaugmented-type preconditioners, have been recently proposed (see Powell & Ullmann(2010)). However, their implementation is not trivial and they require further inves-tigation.The simulations have all been carried out in serial within the MATLAB environ-ment installed in the SRIF-3 Cluster machine (Merlin) at Cardi� University.6.2 SFEM solvers6.2.1 Block-diagonal preconditionerTest problem 1 - variable hThe boundary conditions and source term for this test problem are described in�5.2.1.Table 6.1 reports the size of the stochastic space P and the total number ofunknowns associated with each value of the discretisation parameter h.Table 6.2 reports iteration counts and times for CG equipped with the incompleteCholesky (cholinc) and algebraic multigrid (AMG) versions of the block-diagonalpreconditioner (Pbdiag). The set-up times for the problem and the preconditioners
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p = 2 p = 3 p = 4

d = 4
P 15 35 70

h = 1
32

16, 335 38, 115 76, 230
h = 1

64
63, 375 147, 875 295, 750

h = 1
128

249, 615 582, 435 1, 164, 870
d = 6

P 28 84 210
h = 1

32
30, 492 91, 476 228, 690

h = 1
64

118, 300 354, 900 887, 250
h = 1

128
465, 948 1, 397, 844 3, 494, 610are reported in Appendix A (Table A.1). The set-up for the preconditioners, i.e. theconstruction of the coarse grids and the computation of the factorisation of K0, isperformed only once.Results for the cholinc and AMG versions of the mean preconditioner (Pmean) areincluded in Appendix B (Table B.1).Table 6.2: CG iterations and solution timings for Pbdiag - Test Problem 1

p = 2 p = 3 p = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4cholinc 1
32

11 0.58 17 0.53 31 2.02
1
64

13 0.75 22 3.12 38 10.77
1

128
19 10.22 29 38.21 55 151.07AMG 1

32
9 0.61 10 0.83 11 1.8

1
64

9 0.68 10 1.79 11 4.03
1

128
9 3.11 10 8.43 11 19.18

d = 6cholinc 1
32

11 0.27 18 1.41 31 6.75
1
64

14 1.49 22 7.75 39 36.91
1

128
20 20.56 29 92.34 55 457.25AMG 1

32
9 0.58 10 1.99 11 5.62

1
64

9 1.26 10 4.47 11 12.89
1

128
9 5.95 10 21.16 11 60.88The results from Table 7.2 can be summarised as follows:



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 1351. The block-diagonal preconditioner is very e�cient. However, this problem rep-resents a special case in which the variance of the coe�cient C is small;2. The AMG version of the block-diagonal preconditioner is more e�cient thanthe cholinc version, especially for �ne discretisations;3. The AMG version is h-optimal and d-optimal. Only small variations in Nit areobserved for increasing polynomial order;4. The cholinc version is neither h-optimal nor p-optimal. Only small variationsin Nit are observed for increasing d.The AMG version of the mean preconditioner (see Table B.1) is signi�cantly lesse�cient than the AMG version of the block-diagonal preconditioner. Interestinglythe same is not observed for the cholinc versions.Test problem 2 - variable σThe speci�cation for test problem 2 is described in �6.2.2.For this test problem the discretization parameter is �xed, h = 1
32
. The dimensionof the stochastic space and the total number of unknowns are reported in Table 6.1.Table 6.3 reports CG iteration count Nit and timings tCPU for varying d, p and σ.The problem and preconditioner (both AMG and cholinc versions) set-up times arelisted in Appendix A.2.The same simulations were performed using the mean preconditioner and theresults are listed in Appendix B (Table B.2).The results in Table 6.3 can be summarised as follows:1. The preconditioner Pbdiag is not robust with respect to the standard deviationof the spatial random �eld σ. Its performance deteriorates signi�cantly with



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 136Table 6.3: CG iterations and solution timings for Pbdiag - Test Problem 2

p = 2 p = 3 p = 4
σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4cholinc 0.3 17 0.66 29 0.94 46 3.16
0.5 19 0.25 33 1.08 54 3.7
0.7 24 0.32 43 1.4 73 5AMG 0.3 10 0.47 10 0.91 11 2.01
0.5 12 0.47 14 1.26 16 2.92
0.7 16 0.61 20 1.79 25 4.59

d = 6cholinc 0.3 17 0.43 29 2.42 47 10.68
0.5 19 0.48 34 2.82 57 13
0.7 24 0.6 44 3.65 92 21.19AMG 0.3 10 0.72 11 2.41 12 6.82
0.5 12 0.86 15 3.29 17 9.66
0.7 16 1.14 23 5.04 33 18.74increasing σ;2. Both versions of the block-diagonal preconditioner are not h, d and p-optimal.Similar observations are obtained from the data associated with the mean precon-ditioner (see Table B.2).For large standard deviations of C, the matrices Kk become increasingly moreimportant as they contain information on the �uctuations of the spatial random �eld.That information is not included in the Pbdiag and Pmean preconditioners. Hence,their performance worsens for increasing σ.Test problem 3 - discontinuous-istropic conductivity �eldIn this test problem the domain D = [0, 1]× [0, 1] is partitioned into four subdo-mains namely: D1 = [0.0, 0.5]× [0.0, 0.5], D2 = [0.5, 1.0]× [0.0, 0.5], D3 = [0.5, 1.0]×

[0.5, 1.0] and D4 = [0.0, 0.5]× [0.5, 1.0]. A Karhunen-Loève expansion with exponen-tial covariance and correlation lengths lx = ly = 0.5 is performed for each sub-domain.



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 137Dirichlet boundary conditions are imposed on the left and right edge of the squaredomain such that ΓD = {0, 1} × [0, 1]. Homogeneous Neumann boundary conditionsare imposed on the upper and lower edges of the domain.The conductivity coe�cient C is a spatially discontinuous uniform random �eld.Thus, independent and uniformly distributed random variables, de�ned in the interval
(−1, 1), are used in this test problem. Hence the basis functions for the stochasticspace are d-variate Legendre polynomials of order less than or equal to p.Four cases are analysed, three of which have constant coe�cient of variation δ andone with spatially variable δ. The Gaussian distributions have the following statisticalparameters:

1st CASE








µD1
= 0.1, σD1

= 0.03, µD2
= 100, σD2

= 30,

µD3
= 1000, σD3

= 300, µD4
= 1, σD4

= 0.3;

2nd CASE








µD1
= 0.1, σD1

= 0.05, µD2
= 100, σD2

= 50,

µD3
= 1000, σD3

= 500, µD4
= 1, σD4

= 0.5;

3rd CASE








µD1
= 0.1, σD1

= 0.07, µD2
= 100, σD2

= 70,

µD3
= 1000, σD3

= 700, µD4
= 1, σD4

= 0.7;

4th CASE








µD1
= 0.1, σD1

= 0.07, µD2
= 100, σD2

= 50,

µD3
= 1000, σD3

= 600, µD4
= 1, σD4

= 0.7;The discretisation parameter is �xed, h = 1
32
, and the size of the problem is givenin Table 6.1. Iteration counts and timings for CG preconditioned with the AMG andcholinc versions of Pbdiag and Pmean are given in Table 6.4 and Appendix B (TableB.3), respectively. The set-up time for the problem (building sti�ness matrices andpolynomial coe�cients) and the preconditioners is reported in Appendix A (Table



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 138A.3). Table 6.4: CG iterations and solution timings for Pbdiag - Test Problem 3

p = 2 p = 3 p = 4
δ = σ

µ
Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4cholinc 0.3 20 0.28 33 1.02 53 3.45
0.5 23 0.29 39 1.2 61 3.97
0.7 25 0.31 44 1.39 74 4.81

0.7,0.5,0.6,0.7 24 0.3 42 1.29 69 4.52AMG 0.3 8 0.68 9 0.66 10 1.52
0.5 10 0.31 12 0.88 13 1.94
0.7 13 0.4 17 1.23 20 2.99

0.7,0.5,0.6,0.7 12 0.37 15 1.09 17 2.52
d = 6cholinc 0.3 19 0.45 33 2.58 55 12.01

0.5 21 0.5 37 2.91 62 13.42
0.7 25 0.59 46 3.63 83 18.01

0.7,0.5,0.6,0.7 25 0.59 43 3.37 75 16.25AMG 0.3 8 0.46 9 1.61 10 4.67
0.5 10 0.57 13 2.32 15 6.97
0.7 13 0.74 19 3.42 25 11.62

0.7,0.5,0.6,0.7 12 0.68 16 2.85 21 9.76Remarks on the data presented in Table 6.4 are very similar to those summarisedfor test problem 2. However, it should also be noted that the data for test problem 3shows that the preconditioners are robust with respect to discontinuities in the meanvalue of C. In fact, if we compare the number of iterations for the case of δ = 0.3(discontinuous �eld) and the case of σ = 0.3 in test problem 2 (continuous �eld),it is easily understood that discontinuities have little or no negative impact on theperformance of the solver. The same conclusions are inferred for all other cases.6.2.2 Block Symmetric Gauss-Seidel PreconditionerThe block symmetric Gauss-Seidel preconditioner (PbSGS) is proposed to overcomesome of the limitations of the popular mean and block-diagonal preconditioners. Each



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 139Gauss-Seidel internal iteration includes a forward and backward sweep to guaranteethe symmetry of the preconditioner for CG. The algorithm used in the experiments isdescribed in �4.5.3. A �xed number of iterations maxitb is used as stopping criteria.For the results listed in this section we use maxitb = 2.Note that only experiments based on the symmetric version of the Gauss-Seidelalgorithm are presented in this chapter. In fact, the theory of the Conjugate Gradientmethod (Saad 2003) requires the preconditioner to be symmetric and positive def-inite. The implementation of a non-symmetric Gauss-Seidel preconditioner for CGis straightforward however it was decided to not carry out experiments using suchsolver as this would be inconsistent with theoretical concepts.The immediate advantage of the bSGS preconditioner is the fact that all blocksof A are included in the preconditioned system. Therefore, it is expected to performwell for the case in which the standard deviation of the spatial random �eld σ is large.As for Pbdiag and Pmean, the preconditioner's sub-systems can be approximatelyinverted using either an incomplete Cholesky factorisation of K0 or one V-cycle ofAMG code. The results of the previous section show that the AMG version alwaysoutperforms the cholinc one. Therefore, in this section we replace the latter methodwith a multi-frontal sparse direct solver UMFPACK.The settings for each of the test problems are as described in �6.2.1.Test problem 1 - variable hTable 6.5 lists the number of iterations Nit and the CPU time tCPU for CGequipped with the UMFPACK and AMG versions of PbSGS. The set-up time forthe problem and preconditioner (AMG case only) is reported in Appendix A (Ta-ble A.4). The UMFPACK version of the preconditioner does not require any set-uptime as the coe�cient matrix is inverted exactly. The AMG version instead requires



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 140the construction of the coarse grids and smoother for the multigrid approximation.However, this is performed only once.Table 6.5: CG iterations and solution timings for PbSGS - Test Problem 1

p = 2 p = 3 p = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 1
32

3 0.47 4 0.5 4 1.03
1
64

3 0.74 4 2.4 4 4.82
1

128
3 5.8 4 14.43 4 29.26AMG 1

32
6 0.82 6 0.88 6 1.8

1
64

6 0.83 6 2.03 6 4.22
1

128
6 3.62 6 8.87 6 18.36

d = 6UMFPACK 1
32

3 0.3 4 1.24 4 3.22
1
64

3 1.41 4 5.9 4 15.03
1

128
4 11.42 4 35.14 4 89.92AMG 1

32
6 0.69 6 2.17 6 5.64

1
64

6 1.62 6 5.21 6 13.75
1

128
6 6.91 6 22.15 6 58.24The results presented in Table 6.5 can be summarised as follows:1. Both versions of the Gauss-Seidel preconditioner considerably reduce the num-ber of CG iterations;2. The comparison of the data with those presented in Table 6.2 show that theAMG version of PbSGS only slightly improves the solution times of the block-diagonal preconditioner;3. The UMFPACK version is more e�cient than the AMG one only for very coarsemeshes. This is a re�ection of the fact that the latter methodology has theadvantage that the computational cost grows linearly with the problem size.



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 141Test problem 2 - variable σTable 6.6 lists the iteration count and solution times for test problem 2. Theproblem set-up time and the AMG cost are reported in Appendix A (Table A.5).Table 6.6: CG iterations and solution timings for PbSGS - Test Problem 2

p = 2 p = 3 p = 4
σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 0.3 3 0.18 3 0.4 3 0.82
0.5 4 0.22 4 0.53 4 1.09
0.7 5 0.28 6 0.79 8 2.18AMG 0.3 6 0.48 6 1 6 2.05
0.5 7 0.48 7 1.16 7 2.39
0.7 8 0.55 9 1.5 10 3.4

d = 6UMFPACK 0.3 3 0.32 3 1 3 2.58
0.5 4 0.42 4 1.32 5 4.27
0.7 5 0.52 7 2.31 10 8.49AMG 0.3 6 0.79 6 2.45 6 6.35
0.5 7 0.92 7 2.86 8 8.44
0.7 8 1.05 10 4.08 13 13.75The results presented in Table 6.6 can be summarised as follows:1. Both versions of the block symmetric Gauss-Seidel preconditioner show a signif-icant improvement in terms of the number of CG iterations. This improvementbecomes more evident for large values of σ;2. The comparison of the AMG data with those of Table 6.3 (block-diagonal pre-conditioner) reveals that the Gauss-Seidel preconditioner is generally compu-tationally cheaper and the improvement in performance increases with larger

σ;3. The UMFPACK version is more e�cient than the AMG one. However, this isdue to the fact that, in this experiment, the discretisation parameter is �xed
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32
. For �ner discretisations (larger problems), the multigrid version isgenerally more e�cient (see Table 6.5) than the exact version.Test problem 3 - discontinuous-isotropic conductivity �eldResults for this test problem are very similar to test problem 2 and therefore theobservations summarised for Table 6.6 are also valid for Table 6.7. However, this testproblem is primarily designed to assess the e�ect of a discontinuous conductivity �eldon the performance of the solver. As for the block-diagonal and mean preconditionerswe observe that `jumps' in the conductivity coe�cient have little or no impact on thesolver performance. Note that in this example the mean conductivity µ varies overfour orders of magnitude in the domain. However, the number of iterations of thesolver tends to be lower than for the continuous case (see Table 6.6). This is associatedwith the large mean values used for some of the subdomains in this test problem. Inthe continuous case (Test Problem 2), instead, a constant mean value (µC = 1.0) isused everywhere in the domain.Performance analysisThe experiments presented so far show that using PbSGS signi�cantly reduces thenumber of CG iterations for convergence. However, this does not necessarily resultin an overall improvement in the computational time. It should be noted that theperformance of CG depends on the chosen stopping criteria for the Gauss-Seidelalgorithm. The results for the experiments presented in the previous sections areobtained using a �xed maximum number of iterations, maxitb = 1. One iterationcomprises one forward and one backward sweep.In this section we look at the performance of CG when more iterations are allowedfor the block symmetric Gauss-Seidel algorithm. Consider test problem 2 with �xed
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p = 2 p = 3 p = 4
δ = σ

µ
Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 0.3 2 0.2 2 0.29 2 0.56
0.5 3 0.19 3 0.42 3 0.83
0.7 4 0.24 5 0.68 5 1.37

0.7,0.5,0.6,0.7 4 0.24 4 0.55 5 1.37AMG 0.3 6 0.53 6 1.14 6 2.31
0.5 7 0.58 7 1.33 7 2.68
0.7 7 0.57 8 1.51 9 3.44

0.7,0.5,0.6,0.7 7 0.57 7 1.33 8 3.06
d = 6UMFPACK 0.3 2 0.23 2 0.68 2 1.75

0.5 3 0.33 4 1.32 4 3.44
0.7 4 0.44 5 1.65 7 5.99

0.7,0.5,0.6,0.7 4 0.44 5 1.65 6 5.15AMG 0.3 6 0.91 6 2.78 6 7.08
0.5 7 1.06 7 3.22 7 8.26
0.7 8 1.2 9 4.13 11 12.91

0.7,0.5,0.6,0.7 7 1.06 8 3.69 10 11.78

p = 4 and examine the performance of the algorithm for successively larger values of
maxitb, maxitb = 1, 2, 3, . . ., until only one CG iteration is required for convergence.The CG iteration count and timings for these serial experiments with d = 4 and
d = 6, are reported in Table 6.8. Note that for this analysis the UMFPACK versionof the preconditioner was used.The results reported in Table 6.8 for d = 4, show that the best solution times areobtained for low values of maxitb (speci�cally maxitb = 1). In contrast, the resultsfor d = 6 suggest that for large σ the best computational time is achieved for largevalues of maxitb (speci�cally maxitb = 21).The case in which maxitb is large and tCPU is small corresponds to the situation inwhich convergence is obtained in one CG iteration. It is clear that in this circumstancethe bulk of the computational work is done by the preconditioner (PbSGS) and very
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maxitb - Test Problem 2

maxitb σ = 0.3 σ = 0.5 σ = 0.7

d = 4 Nit tCPU Nit tCPU Nit tCPU

1 3 0.82 4 1.09 8 2.18
2 2 1.00 3 1.50 5 2.51
3 1 0.73 2 1.45 4 2.91
4 1 0.95 2 1.90 3 2.86
5 1 1.18 2 2.37 3 3.55
6 1 1.41 1 1.41 3 4.23
8 1 1.86 1 1.86 2 3.74
10 1 2.38 1 2.38 2 4.77
12 1 2.80 1 2.80 2 5.62
14 1 3.24 1 3.23 1 3.23

d = 6
1 3 2.58 5 4.27 10 8.49
2 2 3.11 3 4.66 7 10.87
3 1 2.27 2 4.52 6 13.53
4 1 2.96 2 5.93 5 14.82
5 1 3.66 2 7.31 4 14.59
6 1 4.36 2 8.73 4 17.44
7 1 5.02 1 5.01 3 15.06
10 1 7.35 1 7.36 3 21.40
15 1 10.99 1 10.94 2 21.71
21 1 5.98 1 5.99 1 5.99little by the main solver (CG). Given that the preconditioner should serve only as ameans to improve the conditioning of the system matrix, the results showing just oneCG iteration should not be taken into consideration in relation to the performanceanalysis carried out in this section. On the other hand, this aspect reveals thatan independent Gauss-Seidel (symmetric or not symmetric) solver could be a verye�cient alternative to Krylov subspace iterative schemes. In �6.2.3 results obtainedusing Gauss-Seidel solvers are reported for all test problems considered in this chapter.Excluding the data associated with one CG iteration, Table 6.8 show that for allvalues of σ the best computational performance is achieved for maxitb = 1. Figures6.1a and 6.1b show CG iterations versus CPU times for maxitb = 1, 2, 3 for d = 4and d = 6, respectively. The �gures indicate that there is a clear linear relationship
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(b) d = 6Figure 6.1: Performance analysis of CG preconditioned with PbSGS for Test Problem
2between CG (preconditioned with PbSGS), σ and tCPU . Out of the three best �tlines pictured the one for maxitb = 1 shows the best convergence rate. Given theseconsiderations one Gauss-Seidel iteration was chosen as stopping criteria for all thenumerical experiments.6.2.3 Gauss Seidel SolversThe experiments carried out for CG equipped with a block symmetric Gauss-Seidel preconditioner revealed that this methodology could also be e�ective whenused as a stand alone solver. We perform simulations based on a symmetric (bSGS )and a non-symmetric (bGS ) block Gauss-Seidel solver. The symmetric case includesa forward and a backward sweep per iteration and the non-symmetric case only aforward sweep.As explained in �4.5.3, there are several possible re-orderings for the block struc-ture of A and a Gauss-Seidel algorithm could perform di�erently according to such



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 146re-orderings. Examples of reordering aimed at reducing the bandwidth of A using areverse Cuthill-McKee algorithm are given in Keese (2004). In our implementationwe retain the structure as presented in Figure 4.1 and obtained by the summationof progressive (i = 1, . . . , d) Kronecker terms (see 4.38). This ordering is the mostnatural choice as it represents the summation of decreasing Karhunen-Loéve modes(see 4.3).As for Pbdiag and PbSGS preconditioners, there can be various versions of theGS algorithm depending on the method used to solve the P linear sub-systems ofequations. In the main text we report experiments based on algebraic multigridwhilst Appendix D lists the results based on UMFPACK.As for CG, the tolerance for the GS solvers is set to 10−8. In each table we listiteration count Nit and solution times tCPU for both bSGS and bGS.Test problem 1 - variable hTable 6.9 lists iteration count and solution times for test problem 1. Results fromthis Table are summarised as follows:1. GS solvers are also optimal with respect to the discretisation parameter h;2. Both AMG versions of bSGS and bGS are computationally more e�cient thanCG with either Pbdiag or PbSGS preconditioners;3. For this test problem the non-symmetric implementation of the Gauss-Seidelsolver (bGS ) is computationally more e�cient than the symmetric implemen-tation (bSGS ).It should be noted that the cost per iteration of bGS is approximately half thatof bSGS given that bGS only performs a forward sweep. One bSGS iteration involves
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1

p = 2 p = 3 p = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4bSGS 1
32

4 0.24 4 0.53 4 1.06
1
64

4 0.48 4 1.16 4 2.34
1

128
5 2.4 5 5.69 5 11.59bGS 1

32
6 0.18 6 0.4 6 0.8

1
64

6 0.37 6 0.87 7 2.02
1

128
6 1.46 7 4.04 7 8.22

d = 6bSGS 1
32

4 0.43 4 1.27 4 3.2
1
64

4 0.93 4 2.85 5 9.07
1

128
5 4.51 5 13.89 5 35.55bGS 1

32
6 0.33 6 0.96 6 2.43

1
64

6 0.7 6 2.12 7 6.45
1

128
6 2.74 7 9.84 7 25.47two sweeps. Therefore, 5 iterations of bSGS in Table 6.9, for example, correspondsto 10 sweeps. When this is compared with bGS sweeps we see that the latter is upto 30% cheaper in terms of computational time.Test problem 2 - variable σTable 6.10 lists the iteration count and solution times for test problem 2. Resultsfor the UMFPACK version of the Gauss-Seidel solvers are included in Appendix D(Table D.2).The main �ndings from this table can be summarised as follows:1. Gauss-Seidel solvers are less e�cient than CG preconditioned with PbSGS forall values of σ (see Table 6.6);2. The results of the performance analysis section seemed to indicate that a Gauss-Seidel solver would perform better as a stand alone solver than as a precon-ditioner for CG. However, this initial observation was not con�rmed by the
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2

p = 2 p = 3 p = 4
σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4bSGS 0.3 5 0.34 6 0.91 6 1.81
0.5 8 0.52 9 1.36 10 3.01
0.7 11 0.71 15 2.24 22 6.57bGS 0.3 7 0.24 8 0.61 8 1.22
0.5 10 0.33 12 0.91 14 2.11
0.7 15 0.49 22 1.65 34 5.13

d = 6bSGS 0.3 6 0.72 6 2.17 6 5.49
0.5 8 0.96 10 3.61 11 10.04
0.7 12 1.43 19 6.83 38 34.65bGS 0.3 7 0.43 8 1.46 9 4.14
0.5 10 0.61 13 2.36 16 7.34
0.7 16 0.96 27 4.87 59 26.97consequent analysis, results of which are presented in this table.Test problem 3 - discontinuous-isotropic conductivity �eldFor completeness the results of the Gauss-Seidel simulations for test problem 3 arepresented in Table 6.11. These results are similar to those obtained for Test Problem

2, hence the same conclusions apply also to this problem.Additionally, it should be noted that in contrast to the other solvers there is littleor no di�erence in terms of Nit and tCPU between the case with variable δ and theone with constant δ = 0.7. Therefore, we can deduce that for spatially variable σ theperformance of the Gauss-Seidel solver is entirely dependent on the highest value of
σ in the domain.
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3

p = 2 p = 3 p = 4
δ = σ

µ
Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4bSGS 0.3 5 0.38 6 1.03 6 2.05
0.5 7 0.52 8 1.36 9 3.06
0.7 10 0.73 13 2.2 17 5.77

0.7,0.5,0.6,0.7 10 0.73 13 2.2 17 5.77bGS 0.3 7 0.27 8 0.69 8 1.37
0.5 10 0.37 11 0.94 13 2.22
0.7 13 0.48 19 1.61 26 4.43

0.7,0.5,0.6,0.7 13 0.48 18 1.53 25 4.24
d = 6bSGS 0.3 6 0.82 6 2.45 6 6.21

0.5 8 1.09 9 3.67 11 11.35
0.7 11 1.49 16 6.52 28 28.83

0.7,0.5,0.6,0.7 11 1.49 16 6.51 28 28.89bGS 0.3 7 0.48 8 1.65 8 4.16
0.5 10 0.68 13 2.66 15 7.77
0.7 15 1.02 23 4.7 43 22.23

0.7,0.5,0.6,0.7 15 1.02 23 4.69 43 22.236.3 Comparison and ConclusionsIn the previous sections a large number of methods have been tested to identifythe most e�cient solver for the stochastic formulation of the di�usion problem (linearcase). To identify the methods which are the most e�cient and robust with respectto h, σ and discontinuous µ, the data presented in the previous tables are summarisedin Figures 6.2, 6.3 and 6.4. Only the case for p = 4 is considered and d = 4, 6. Themethods included in the �gures are listed below.1. CG with Pbdiag (AMG)2. CG with Pbdiag (UMFPACK )3. CG with Pbdiag (cholinc)
4. CG with Pmean (AMG)5. CG with Pmean (UMFPACK )6. CG with Pmean (cholinc)
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10. bSGS (UMFPACK )11. bGS (AMG)12. bGS (UMFPACK )Note that for the AMG and cholinc cases the time required to construct the gridsand smoother for the approximation and the time required for the factorisation of

K0 is added to the solution times. The UMFPACK case does not require any set-uptime.Figure 6.2 shows that a block Gauss-Seidel solver with algebraic multigrid is themost e�cient method for problems on medium to �ne discretisations and small σ.The UMFPACK version is more e�cient than the AMG one only for coarse meshes.Although CG with PbSGS performs better than the block-diagonal and mean precon-ditioners, these methods are always outperformed by Gauss-Seidel solvers.Figures 6.3 and 6.4 show that a conjugate gradient solver with PbSGS (UMFPACKversion) is the most e�cient method for problems with medium / large standard de-viation and discontinuous conductivity. However, this is true only for coarse discreti-sations which indicates that a better performance of the AMG version is expected for�ner meshes. The performance of all versions of the Gauss-Seidel solvers deterioratessigni�cantly when the standard deviation is large.Generally it appears that, although Gauss-Seidel solvers perform well for variablemeshes they are not robust with respect to σ. The block diagonal preconditioner(AMG version), part of the family of mean-based preconditioners, performs well forvariable h, variable σ and discontinuous conductivity. The same can be concludedfor the AMG version of PbSGS (method 7).The outcome of this analysis reveals that the AMG version of PbSGS is very e�cientand the most robust solver considered in this work and therefore it should generally
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Pbdiag is a valid alternative and it possesses the important advantage of being easy toimplement.6.4 SMFEM solvers6.4.1 Schur complement preconditionerIn this section we report the performance of MINRES equipped with the Schurcomplement preconditioner, PSchur, described in �4.6.2. The computation of diag(A)−1is inexpensive and it is computed directly using the back-slash MATLAB functional-ity. As for the deterministic case the Schur complement part of the preconditionercan be solved exactly (using e.g. UMFPACK ) or approximated by using one V-cycleof AMG code.Test problem 1 - variable hThe settings for this test problem are described in �5.2.1. Table 6.12 reports thesize of the stochastic space P and the total number of unknowns for each level ofdiscretisation. As for the primal formulation the size of the global system grows veryquickly with p. Note that the size of the problem is signi�cantly larger than for theprimal formulation (see Table 6.1). This is obviously a consequence of the fact thatwith the mixed method, in addition to the element-wise potential approximation asolution for the normal �uxes at each discrete edge is also obtained. Table 6.12 reportsthe size of the stochastic space and the total number of unknowns associated witheach value of the discretisation parameter h. The size of the linear systems reportedin the table follow from (4.46) and (4.47).Table 6.13 reports the MINRES iteration count and timings for test problem
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p = 2 p = 3 p = 4

d = 4
P 15 35 70

h = 1
32

77, 760 181, 440 362, 880
h = 1

64
309, 120 721, 280 1, 442, 560

h = 1
128

1, 232, 640 2, 876, 160 5, 752, 320
d = 6

P 28 84 210
h = 1

32
145, 152 435, 456 1, 088, 640

h = 1
64

577, 024 1, 731, 072 4, 327, 680
h = 1

128
2, 300, 928 6, 902, 784 17, 256, 960

1. The table reports results for experiments carried out using the exact version(UMFPACK ) of PSchur and the approximated version (AMG). The set-up times forthe problem and the preconditioner are reported in Appendix E (Table E.1). Theset-up time for the preconditioner, i.e. the CPU cost of constructing the coarse gridsfor K0, is performed only once.Table 6.13: MINRES iterations and solution timings for PSchur - Test Problem 1

p = 2 p = 3 p = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 1
32

43 3.21 44 8.43 47 22.71
1
64

43 13.33 45 36.17 47 84.74
1

128
43 79.72 45 198.92 47 453.24AMG 1

32
45 3.19 48 8.63 49 22.34

1
64

45 9.25 48 26.96 51 67.1
1

128
47 41.02 48 108.98 51 268.15

d = 6UMFPACK 1
32

43 6.26 45 30.21 47 135.22
1
64

43 26.83 45 103.38 48 392.67
1

128
43 148.77 45 533.73 48 1, 830.21AMG 1

32
45 6.35 48 30.98 49 137.85

1
64

47 19.88 49 85.32 51 346.05
1

128
47 80.69 49 325.83 52 1, 276.01The results presented in Table 6.13 can be summarised as follows:



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 1531. The Schur complement preconditioner is optimal or almost optimal with respectto h and d. However, there is a small increase in the number of iterations forincreasing p;2. Although having a slightly larger iteration count, the AMG version of the pre-conditioner is more e�cient than the exact version. Given that the precondi-tioner set-up time is performed only once (see Appendix E, Table E.1), its CPUcost has little impact on the overall solution timings;3. Also note that for coarse discretisations the CPU timings are very similar. It isonly for �ne discretisations that the AMG version is more e�cient.Note that for the case h = 1
128

, the deterministic problem has size 82, 176 d.o.f.Considering d = 6 and p = 4, the dimension of the stochastic space is P = 210 andthe global stochastic system has size 17, 256, 960 d.o.f. Despite the very large size ofthe problem, the solution is obtained in just 56 minutes.Test problem 2 - variable σThe settings for test problem 2 are described in �6.2.2. The size of the problemfor h = 1
32

is given in Table 6.12. The performance of the Schur complement precon-ditioner for varying σ is reported in Table 6.14. As for the previous case the set-uptime for the preconditioner is performed only once. This is reported in Table E.2together with the set-up timings for the test problem itself.The results reported in Table 6.14 can be summarised as follows:1. Similarly to the primal formulation (see �5.2.1), the performance of the Schurcomplement preconditioner signi�cantly deteriorates for moderate and large val-ues of σ;
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p = 2 p = 3 p = 4
σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 0.3 47 3.22 49 8.66 51 22.32
0.5 58 3.84 65 11.64 70 30.73
0.7 72 4.78 91 16.44 111 48.81AMG 0.3 49 3.74 53 9.36 55 23.61
0.5 62 4.04 69 12.24 74 32.76
0.7 77 5.08 97 17.12 119 51.45

d = 6UMFPACK 0.3 48 6.64 51 29.29 52 114.62
0.5 59 8.21 68 39.22 76 168.56
0.7 76 10.55 100 57.95 140 312.71AMG 0.3 50 6.78 53 30.01 56 123.4
0.5 63 8.57 71 40.27 80 177.14
0.7 80 10.93 106 60.23 147 326.642. The performance of the AMG and UMFPACK versions of the Schur complementpreconditioner is similar. However, this is because the discretisation used forthis test problem is coarse. It is expected that the di�erence in CPU cost willincrease for �ner discretisation levels.Test problem 3 - discontinuous-isotropic conductivity �eldThe settings for test problem 3 are described in �5.2.1. As for test problem 2,the discretisation level is �xed for h = 1

32
. The solver performance for varying δ isreported in Table 6.15. The problem and preconditioner set-up times are reported inTable E.3.As it has already been observed for the stochastic primal formulation, the perfor-mance of the solver and preconditioners are not a�ected by spatial discontinuities inthe conductivity �eld. In fact, the timings reported in Table 6.15 are comparable tothose reported for the continuous test problem in Table 6.14.
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p = 2 p = 3 p = 4

δ = σ
µ

Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)
d = 4UMFPACK 0.3 45 3.04 48 8.59 51 22.25

0.5 56 3.74 63 11.25 69 30.2
0.7 70 4.67 87 15.45 107 46.95

0.7,0.5,0.6,0.7 67 4.47 83 14.74 100 43.88AMG 0.3 49 3.78 52 9.4 53 23.19
0.5 60 4.04 67 12.13 74 32.42
0.7 76 5.1 94 17.03 115 50.59

0.7,0.5,0.6,0.7 71 4.76 88 15.94 106 46.59
d = 6UMFPACK 0.3 46 6.33 49 27.7 52 114.94

0.5 58 7.99 65 37.06 73 161.82
0.7 72 9.89 96 55.19 131 292.77

0.7,0.5,0.6,0.7 69 9.49 91 52.23 125 278.06AMG 0.3 49 6.8 53 30.38 56 124.33
0.5 62 8.62 70 40.25 79 176.2
0.7 79 10.99 104 59.83 140 313.53

0.7,0.5,0.6,0.7 74 10.26 96 55.23 130 293.16.4.2 ConclusionsThe test problems reported in this chapter are all based on structure triangularmeshes. The case of unstructured meshes with irregular connectivity is not presentedin this work and it is matter for future work. Although structure meshes are used theof the inde�nite linear system obtained by stochastic mixed �nite element methodsusing MINRES equipped by a Schur complement preconditioner (4.57) is computa-tionally very expensive. As expected this is more costly than solving the linear systemobtained with the primal formulation since, in addition to the approximation of thepotential, a solution for the normal �uxes at the �nite element edges is also obtained.Although computationally more expensive the e�cient solution of SMFEM islargely dependent on the preconditioner used with the chosen iterative solver. Thenumerical experiments showed that the Schur complement preconditioner is h-optimal



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 156not only when the complement is inverted exactly but also when it is approximatelyinverted using one V-cycle of AMG code.The experiments also showed that the preconditioner is not robust with respectto the conductivity coe�cient. In fact, only the diagonal of the block-diagonal blocksof the velocity matrix A are used in the preconditioned system. This is su�cient forconductivity coe�cients possessing low standard deviations but generally inadequatefor large standard deviations. In the latter case, in fact, the o�-diagonal blocks of Abecome signi�cantly more important and these are not included in the preconditionedsystem.This drawback is similar to the one we faced using the mean-based preconditionerfor the solution of linear systems obtained by SFEM. In those circumstances wesuccessfully proposed a way of including the o�-diagonal blocks of the coe�cientmatrix A by means of a symmetric block Gauss-Seidel algorithm. Unfortunately,due to the structure (and speci�cally the presence of a zero-block) of the coe�cientmatrix C =
[

A BT

B 0

], the same approach can not be used for the Schur complementpreconditioner.The e�cient solution of discrete linear systems obtained from stochastic mixedformulations is currently a very active research area. The Kronecker product precon-ditioner proposed by Ullmann (2008) signi�cantly reduces MINRES iteration counts.However, this does not necessarily corresponds to improvements in CPU performance.In fact, the author shows that the Schur complement preconditioner performs better(in terms of CPU cost) than the Kronecker preconditioner also for test problems inwhich the conductivity coe�cient possesses large standard deviation.It appears that SMFEM is not a very e�cient method for the approximationof normal �uxes for uncertain conductivity coe�cients. The question as to whichmethod is suitable in this situation remains unanswered.



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear StochasticCase 157As was pointed out in Chapter 3, there exists several other (deterministic) methodsthat provide accurate solutions for the normal �uxes, most of which are variations of�nite volume schemes. Their associated linear systems are symmetric and positivede�nite as should be their stochastic counterparts. Therefore, for these methods, itshould be possible to use the proposed symmetric block Gauss-Seidel preconditionerand they could represent a viable alternative to SMFEM.Another possibility is the stochastic implementation of the decoupling of the ve-locity vector from the pressure vector in (2.38) proposed by Chavent et al. (1984),Chavent & Ja�ré (1986) and Scheichl (2001) for deterministic problems. The advan-tage of the latter approach is that the inde�nite system is decoupled in a velocitysystem which is SPD and a triangular system for the potential approximation. Notethat the implementation of such decoupling in the context of SG methods has notbeen reported in the literature.
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(b) d = 6Figure 6.2: Comparison of methods for the solution of SFEM for test problem 1
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(b) d = 6Figure 6.3: Comparison of methods for the solution of SFEM for test problem 2
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(b) d = 6Figure 6.4: Comparison of methods for the solution of SFEM for test problem 3



Chapter 7
Solution Strategies for StochasticGalerkin Methods - NonlinearStochastic Case
7.1 IntroductionIn the previous chapter the performance of a range of solvers was tested for prob-lems in which the random conductivity coe�cient is given in terms of a Karhunen-Loéve expansion (KLE - linear stochastic case). In this chapter the focus is on so-lution strategies for SG methods when the conductivity coe�cient is determined byimplementing a polynomial chaos expansion of a KLE.So far we have used polynomial chaos expansions to represent unknown variablessuch as the potential u and the normal �uxes q. However, this expansion can alsobe used equally to represent input parameters (Ghanem & Spanos 2003, Sudret &Der Kiureghian 2000) such as hydraulic conductivity. More importantly, polynomialchaos expansions have been used successfully for the representation of lognormal161



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 162random �elds.Lognormal random �elds are very popular among physical scientists and mod-ellers for various reasons. Firstly, there are several studies, the data of which aresummarised in Gelhar (1983) and Rubin (2003), that show that parameters such ashydraulic conductivity or transmissivity are often lognormally distributed. Secondly,a lognormal distribution, although having in�nite upper bound, only admits the pos-itive part of the physical spectrum. This is obviously consistent with the physicalrequirement of these parameters.The e�cient solution of stochastic Galerkin problems in which the random inputis a lognormal �eld poses important mathematical challenges. It is shown in thenext section that the structure of the coe�cient matrix di�ers signi�cantly from theone associated with the linear case (KLE) (see Chapter 4). Speci�cally, for the well-posedness of A to be guaranteed, the coe�cient matrix is block dense, i.e there arenon-zero entries for each block of A.In Chapter 6 we have shown by experiments that a symmetric block Gauss-Seidelpreconditioner for CG represents a valid alternative to traditional mean-based pre-conditioners. Its advantage is that the information associated with the o�-diagonalblocks of A are incorporated into the preconditioned system, hence improving theconditioning of the coe�cient matrix. As a result CG requires few iterations to con-verge. The preconditioner PbSGS is particularly e�cient for those cases in which theo�-diagonal blocks of A hold signi�cant information on the conductivity coe�cient,i.e. problems with large values of σ.It becomes apparent that PbSGS should perform particularly well for the nonlinearcase, given that in such circumstances A is block-dense.The author would like to express his gratitude to E. Zander for making publiclyavailable the Stochastic Galerkin library (sglib) (Zander 2010) which has signi�cantly



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 163helped the developments of the codes used in this chapter.7.2 Polynomial Chaos for Lognormal Random FieldA lognormal random �eld is obtained by transforming a Gaussian random �eld. In�4.3 we have seen that a Gaussian random �eld can be approximated by a truncatedKarhunen-Loéve expansion. Its exponentiation gives a lognormal random �eld
L(x, ξ(ω)) = exp

(

µ(x) + σ

d
∑

i=1

√

λiξiβi(x)

)

. (7.1)In the context of SG methods, (7.1) is expanded by projecting the d terms of theKL expansion (of the Gaussian random �eld) onto order p polynomial chaos
L(x, ξ(ω)) =

P
∑

k=1

Lk(x)χk(ξ), (7.2)where Lk(x) are deterministic functions derived from (7.1) and for which closedforms can be obtained algebraically (see Ghanem (1999a,b), Sudret & Der Kiureghian(2000), Ghanem & Spanos (2003), Ullmann (2008)). Here χk are chaos polynomialsin d random variables (normal random variables) of degree less than or equal to p.Following the discussion presented in �4.5.2, the solution vector is represented bya polynomial chaos expansion in d random variables with chaos order less than orequal to p, as described in (4.30). Substituting (7.2) and (4.30) into the discretevariational formulation (4.22), we obtain the following Galerkin matrix, A
A =

N
∑

k=1

Gk ⊗Kk, (7.3)where the stochastic Galerkin matrices Gk are given by
Gk(i, j) = 〈χkχiχj〉 k, i, j = 1, . . . , P, (7.4)and Kk are deterministic matrices obtained from the discretisation of the lognormal�eld (7.2).



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 164The implementation given so far considers the same maximum degree of polynomi-als p for the polynomial chaos expansion of the solution vector u and the conductivity�eld L(x, ·). In actual fact, polynomials of di�erent orders can and should be usedfor the two expansions. In fact, it can be shown that for the Galerkin matrix A to bepositive de�nite (Keese 2004, Matthies & Keese 2005, Ullmann 2008) all polynomialsof degree less than or equal to 2 × pu have to be included in the polynomial chaosexpansion of L, where the subscript u refers to the maximum polynomial order chosenfor the solution vector. Only when this condition is satis�ed, a full Galerkin projec-tion of the polynomial chaos expansion of L obtained. Following Ullmann (2008) thenumber of chaos polynomials used for the representation of L is
N =

(d+ 2pu)!

d!2pu!
, (7.5)where d is the number of random variables used in the Karhunen-Loéve Expansionand pu is the maximum polynomial order used for the polynomial chaos expansion ofthe solution vector. Note that N corresponds to the number of Kronecker productsin (7.3). Note that the size of the stochastic space associated with the solution vector

u maintains its size corresponding to P = (d+pu)!
d!pu!

. Hence, the stochastic Galerkinmatrices Gk are
Gk(i, j) = 〈χkχiχj〉 k = 1, . . . , N and i, j = 1, . . . , P. (7.6)It can be demonstrated (see Keese (2004) and Ullmann (2008)) that the innerproduct 〈χkχiχj〉 is non-zero in only �nitely many cases. In fact 〈χkχiχj〉 = 0 for all

χk with total degree greater than 2 × pu. A consequence of this observation is thatgiven a �xed number of random variables d, the in�nite polynomial chaos expansion of
L automatically truncates itself as part of the SG method (see Figure 7.1(d)). Hence,since the expansion truncates naturally, no error is introduced in the representationof L.



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 165To make this clearer, let us consider the case in which d = 3 (three randomvariables) and pu = 3 (maximum polynomial order for the solution vector). Accordingto (4.23), the size of the stochastic space for the solution u is P = 20. Therefore, thesize of each stochastic Galerkin matrix Gk in (7.3) is 20 × 20. Now, the number ofKronecker products N can take the value 20 if the same maximum polynomial order,
pL, is used for the expansion of the lognormal conductivity coe�cient. Alternatively,maximum polynomial orders of 4, 5, or 6 can be used to give the number of Kroneckerproducts corresponding to 35, 56 or 84, respectively. Although, any value of pL canbe used, it is only for pL = 6 (pL = 2× pu), which corresponds to N = 84, that a fullGalerkin projection of the lognormal random �eld is obtained. Furthermore, only inthis circumstance is the global Galerkin matrix A guaranteed to be positive de�nite(see Ullmann (2008, Remark 2.3.4)).Figure 7.1 illustrates the block sparsity of A (which corresponds to ∑N

k=1Gk) fordi�erent values of N . Note that if polynomials of maximum order pL = 6 are used forthe chaos expansion of the conductivity coe�cient, then there is an entry for everyblock of A (see Figure 7.1(d)). If polynomials of order higher than six are considered,the Gk matrices corresponding to orders higher than 2 × pu would have only zeroentries.In Chapter 6 the performance of preconditioned iterative solvers was presentedfor SG problems in which the conductivity coe�cient is described by a Karhunen-Loéve expansion. To be able to use the same preconditioners proposed in Chapter4 and implemented in Chapter 6 it is required that A is positive-de�nite. This isguaranteed only if order 2p polynomials are used for the expansion of the lognormal�eld (Ullmann 2008, Table 2.1).
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nz = 400(d) N = 84 Kronecker productsFigure 7.1: Block sparsity of A7.3 Comparison of Stochastic Galerkin and MonteCarlo MethodsIn this section a comparison between numerical solutions obtained by SG methodsand MCM when lognormal distributions are used to describe the conductivity coef-�cient is reported. The comparison of solutions gives us the possibility to validate



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 167the SG numerical development in a similar manner as was reported in Chapter 5 forGaussian and uniform distributions.As explained in Chapter 5, the timings listed in the tables should only give thereader an indication of the CPU cost required by that speci�c method. The simu-lations have all been carried out in serial within MATLAB 7.4 on a laptop PC with
4Gb of RAM.7.3.1 SFEM vs Monte Carlo SimulationsConsider the settings used in test problem 2 (see 6.2.2). Dirichlet boundary condi-tions u = 1.0 and u = 0 are imposed at the left (x = 0) and right (x = 1) boundariesof the model domain, respectively. Homogeneous Neumann boundary conditions
C∇u · n = 0 are imposed to the upper (y = 1) and lower (y = 0) edge of the modeldomain. Thus the dominant �ow direction is from left to right.The spatial discretisation uses a triangular mesh with h = 1

64
for the approximationof u. This yields a total number of unknowns Nu = 4, 225. The conductivity coe�-cient is a lognormal random �eld, L = exp C. The underlying Gaussian random �eld Chas mean, µ = 1, and standard deviation, σ = 0.2. The spatial variability is modelledby an exponential correlation function with correlation lengths lx = ly = 10.0. Theeigenvalues and eigenfunctions of the Karhunen-Loève expansion of C are available asanalytical expressions (Ghanem & Spanos 2003, Powell & Elman 2009). Figure 7.2ashows the decay of the �rst 10 eigenvalues obtained from the KLE as well as theirsummation. Figure 7.2b illustrates a sample realization of the conductivity �eld forthis test problem.Note that the eigenvalues of the KLE of C decay more rapidly than for the spatialrandom �eld simulated in test problem 1, Chapter 5 (see Figure 5.1). This illustrates
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Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 170Table 7.1 shows the value of the mean and variance at location (0.5, 0.5) for severalvalues of Nr and pu. Polynomials of order two are su�cient to achieve convergence tothe fourth signi�cant digit for the mean solution. Polynomials of order three, instead,are required for the variance solution to achieve the same level of accuracy.As for Gaussian and uniform distributions, Monte Carlo methods converge slowly.Table 7.1 shows that 20, 000 simulations are required for the sample mean to converge.Conversely the sample variance do not converge to the desired level of accuracy forthe maximum sample size considered for this test problem (Nr = 40, 000).Table 7.1: Convergence analysis of MCM and SFEM for test problem with lognormaldistribution
Nr = 10, 000 Nr = 20, 000 Nr = 40, 000Sample Mean 0.54688 0.54696 0.54698Sample Variance 0.00023464 0.00023648 0.00023979

tCPU(sec.) 301 604 1, 205
pu = 2 pu = 3 pu = 4Mean 0.54681 0.54681 0.54681Variance 0.00023659 0.00023683 0.00023683

tCPU(sec.) 4.15 36.70 310.40In agreement with results described in Chapter 5, the CPU times reported inTable 7.1 indicate that the SFEM method is signi�cantly more e�cient than theMCM when lognormal distributions are used.7.3.2 SMFEM vs Monte Carlo SimulationsThe problem settings and boundary conditions are the same as the test problempresented in the previous section. However, the �rst order problem is solved in thissection corresponding to the system of equations described in (4.2).The spatial discretisation uses a triangular mesh with h = 1
64
, thus the numberof unknowns given by the mixed formulation are the sum of the number of elements,

Ne = 8, 192, and number of edges, Nedg = 12, 416. The stochastic space is discretised



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 171in a similar fashion to the one described for the SFEM case, i.e. polynomial chaos upto order pu = 4 are used for the potential u and velocity solution q.The mean and variance solution for the potential are very similar to those obtainedwith the second order problem and these are illustrated in Figure 7.3. The mean andvariance solutions for the components of the velocity �eld for d = 4 and pu = 4 on a
64× 64 uniform grid are shown in Figure 7.5. The Y -component of the velocity �eldis omitted as this is close to zero (the �ow is predominantly along the X direction).Figure 7.5 also includes the solution pro�les for various order of polynomials puand various Monte Carlo samples, Nr. For the mean velocity (X-component) solutionthe pro�le presented is along the direction Y = 0.5 and for the variance solution isalong the direction X = 0.5. An in-depth convergence study for a sampling pointhaving coordinate (0.5, 0.5) is reported in Table 7.2.Polynomials of order two are su�cient to achieve convergence to the fourth signif-icant digit for the mean solution. Polynomials of order three, instead, are required forthe variance solution to achieve the same level of accuracy. This is in agreement withthe convergence rate of the mean and variance solution for the potential recorded forthe second order problem (see Table 7.1).It is apparent from the data presented in Table 7.2 that the Monte Carlo meansolution for the X component of the velocity �eld does not converge for the samplesize considered in this test problem. This suggests that a larger sample is requiredto achieve a solution with adequate accuracy. Equally, the variance solution does notconverge for the maximum sample size herein considered.Table 7.2 also includes solution timings for the MCM and SMFEM methods. Al-though the data show that SMFEM is more e�cient than MCM this conclusion can-not be generalized. In fact the performance of preconditioned MINRES deterioratessigni�cantly for large standard deviations of the conductivity �eld when lognormal
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Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 173Table 7.2: Convergence analysis of MCM and SMFEM for test problem with lognor-mal distribution
Nr = 10, 000 Nr = 20, 000 Nr = 40, 000

qx
Sample Mean 2.77182 2.77526 2.77055Sample Variance 0.30558 0.30873 0.30014
tCPU(sec.) 6, 261 12, 524 25, 048

pu = 2 pu = 3 pu = 4

qx
Mean 2.76780 2.76782 2.76782Variance 0.29639 0.29726 0.29728

tCPU(sec.) 43.62 388.21 2, 311.947.4 SFEM solversAs for the linear case the algorithms used for the numerical experiments are struc-tured so that the coe�cient matrix is never fully assembled. Only the non-zero entriesof the polynomial chaos coe�cients (appropriately indexed) and N matrices (associ-ated with the polynomial chaos discretisation of the spatial random �eld) are stored.In contrast to the linear case N is very large, if the well-posedness of A is to be guar-anteed. Hence, the memory requirements of SG for the nonlinear case are signi�cantlylarger than the linear case.In Chapter 6 it was shown that the cholinc version of the mean-based precondi-tioners, Pbdiag and Pmean, is signi�cantly less e�cient than the AMG and UMFPACKversions. Hence, for the nonlinear case we do not present simulations associated withthe incomplete Cholesky factorisation of K0.As for the simulations presented in Chapter 6, a symmetric Gauss-Seidel smootheris used for the AMG implementation.The simulations have all been carried out in serial within the MATLAB environ-ment installed in the SRIF-3 Cluster machine (Merlin) at Cardi� University. Thusthe CPU timings reported in the following sections can be directly compared withthose reported in Chapter 6.



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 1747.4.1 Block-diagonal preconditionerTest problem 1 - variable hThe settings for this test problem are as described in �5.2.1. However, the con-ductivity coe�cient L = exp (C) is a lognormal spatial random �eld. The underlyingGaussian random �eld has mean µ = 1 and standard deviation σ = 0.1 and the samespatial model described in �5.2.1. Up to six terms of the Karhunen-Loéve expansionare used in (7.1).Table 7.3 reports the size of the stochastic space used for the solution u, the totalnumber of Kronecker products, N , used in the polynomial expansion of L and thetotal number of unknowns. Note that the number of Kronecker products is chosen sothat the positive de�niteness of A is guaranteed (see (7.3) and discussion in �7.2).Table 7.3: Dimensions of P , N and total number of unknowns
pu = 2 pu = 3 pu = 4

d = 4
P 15 35 70
N 70 210 495

h = 1
32

16, 335 38, 115 76, 230
h = 1

64
63, 375 147, 875 295, 750

h = 1
128

249, 615 582, 435 1, 164, 870
d = 6

P 28 84 210
N 210 924 3, 003

h = 1
32

30, 492 91, 476 228, 690
h = 1

64
118, 300 354, 900 887, 250

h = 1
128

465, 948 1, 397, 844 3, 494, 610Following the argumentation presented in Chapter 6 we report conjugate gradientperformance when preconditioned by the diagonal blocks of A. We implement thepreconditioner using either a sparse direct solver (UMFPACK) to exactly invert K0 orone V-cycle of AMG code to approximately invert K0. Iteration counts and solutiontimes for various values of d, p and h are reported in Table 7.4.
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pu = 2 pu = 3 pu = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 1
32

7 0.83 9 2.97 9 14.87
1
64

8 2.06 9 11.11 9 48.23
1

128
8 11.81 9 47.54 9 195.35AMG 1

32
9 0.63 10 3.42 11 18.26

1
64

9 1.79 10 10.99 11 56.6
1

128
9 7.17 10 42.19 11 214.86

d = 6UMFPACK 1
32

7 1.2 9 16.05 9 123.74
1
64

7 4.77 9 53.05 10 434.61
1

128
7 21.79 9 215.67 10 1703.08AMG 1

32
9 1.65 10 18.13 11 152.57

1
64

9 5.16 10 55.77 11 465.32
1

128
9 19.99 10 212.22 11 1847.39The set-up time for problem 1 is reported in Appendix A (Table A.4). Thisincreases with the size of the problem. The table also includes the set-up time forthe preconditioner (AMG case only), which corresponds to the computational cost ofcreating the coarse grids for the AMG approximation. This also increases with thesize of the problem. However, as for the linear case this operation is implementedonly once for the mean sti�ness matrix, K0.Simulation results for the UMFPACK and AMG versions of the mean precondi-tioner, Pmean, are included in Appendix B (Table B.4). The corresponding set-uptimes are identical to those reported for the Pbdiag case and therefore are not includedin this dissertation.The results from Table 7.4 can be summarised as follow:1. Solution times for the nonlinear case are signi�cantly larger than the linear case.Hence, the preconditioner set-up time (AMG case) becomes negligible;2. The UMFPACK version of the block-diagonal preconditioner is slightly more



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 176e�cient than the AMG version. For the linear case this behaviour was observedonly for coarse meshes;3. Both versions of the block-diagonal preconditioner are d-optimal and h-optimal;4. As for the linear case the Pmean preconditioner (see B.4) is signi�cantly lesse�cient than the block-diagonal one.Test problem 2 - variable σThe domain size, boundary conditions and source term for this test problem areas described in �6.2.2. The conductivity coe�cient L is a lognormal �eld the spatialvariability of which is described in �5.2.1. The underlying Gaussian distribution hasconstant mean µ = 1 and four di�erent values are assigned to the standard deviation.The discretization parameter is �xed at h = 1
32
.The size of the stochastic space and the total number of Kronecker products areas those reported in Table 7.3 and the the total number of unknowns corresponds tothose reported in Table 7.3 for h = 1

32
.Conjugate gradient, preconditioned by Pbdiag , iteration count Nit and timings tCPUare reported in Table 7.5. The corresponding problem and preconditioner (AMG only)set-up times are given in Appendix A (Table A.5). Set-up times only depend on thesize of the problem (which in this case is �xed at h = 1

32
), and therefore they areapproximately equal for all values of σ.The results presented in Table 7.5 can be summarised as follows:1. The performance of the block-diagonal preconditioner deteriorates signi�cantlyfor large values of standard deviation;2. Nit and tCPU show exponential growth with respect to p, for all values of d;
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pu = 2 pu = 3 pu = 4
σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 0.3 11 0.7 14 4.73 17 28.66
0.5 16 0.96 23 7.83 30 50.05
0.7 23 1.38 34 11.52 48 80.09
0.9 29 1.74 51 17.38 80 134.01AMG 0.3 13 1.32 16 5.76 19 32.56
0.5 18 1.23 25 8.98 32 54.67
0.7 24 1.69 37 13.3 52 88.93
0.9 31 2.1 54 19.33 83 142.59

d = 6UMFPACK 0.3 11 1.97 14 25.48 17 239.24
0.5 17 3 24 43.65 30 419.48
0.7 23 4.05 35 63.48 50 697.9
0.9 30 5.27 52 94.26 83 1158.83AMG 0.3 13 2.51 16 29.93 19 268.52
0.5 18 3.5 25 46.61 33 468.54
0.7 24 4.6 38 70.83 52 735.08
0.9 31 5.92 55 102.78 87 1239.993. d-optimality for pu = 4 is lost for both versions of the preconditioner;Simulation results for CG preconditioned with Pmean, are included in AppendixB (Table B.5). As for the previous case, its performance is signi�cantly poorer thanthe Pbdiag.Test problem 3 - discontinuous-isotropic conductivity �eldFor a description of the settings of this example refer to the corresponding testproblem 3 in �5.2.1. The conductivity coe�cient L is a spatially discontinuous lognor-mal random �eld. Four cases are presented, three of which have constant coe�cient ofvariation δ and one with spatially variable δ. The underlying Gaussian distributions
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1st CASE









µD1
= 1.0, σD1

= 0.5, µD2
= 0.1, σD2

= 0.05,

µD3
= 0.01, σD3

= 0.005, µD4
= 0.0001, σD4

= 0.00005;

2nd CASE








µD1
= 1.0, σD1

= 0.7, µD2
= 0.1, σD2

= 0.07,

µD3
= 0.01, σD3

= 0.007, µD4
= 0.0001, σD4

= 0.00007;

3rd CASE








µD1
= 1.0, σD1

= 1.0, µD2
= 0.1, σD2

= 0.1,

µD3
= 0.01, σD3

= 0.01, µD4
= 0.0001, σD4

= 0.0001;

4th CASE








µD1
= 1.0, σD1

= 1.0, µD2
= 0.1, σD2

= 0.07,

µD3
= 0.01, σD3

= 0.005, µD4
= 0.0001, σD4

= 0.0001.A Karhunen-Loéve expansion is performed for each sub-domain and the number dof terms retained in the expansion is equal for each sub-domain. The case of di�erent
d in each sub-domain has not been considered in this dissertation and could be asubject for further research. The same spatial model (see 5.2.1) with lx = ly = 0.5 isused for each sub-domain.The discretisation parameter is �xed, h = 1

32
, and the size of the problem is givenin Table 7.3. Iteration count and timings for CG preconditioned with the block-diagonal of A is given in Table 7.6. The corresponding problem and preconditionerset-up times are listed in Table A.6. Also for this test problem the set-up times areapproximately equal for all values of δ.Similar observations are drawn for this test problem as the ones highlighted in�7.4.1. The exponential growth of Nit and tCPU with increasing p is clear also for thistest problem. In addition it appears that the deterioration in the performance of thepreconditioner is exclusively due to the increase in the value of σ in each sub-domain
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are equal.This indicates that the preconditioned solver is robust with respect to discontinuitiesin the mean value of the conductivity coe�cient.Table 7.6: CG iterations and solution timings for Pbdiag - Test Problem 3

pu = 2 pu = 3 pu = 4
δ = σ

µ
Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 0.5 16 1.02 22 7.47 27 45.3
0.7 22 1.33 32 10.92 43 72.27
1.0 33 1.99 56 19.21 84 141.2

1.0,0.7,0.5,1.0 33 1.99 55 18.73 84 140.98AMG 0.5 17 1.21 23 8.28 28 48.07
0.7 23 1.57 34 12.19 45 77.22
1.0 34 2.32 57 20.43 86 147.55

1.0,0.7,0.5,1.0 34 2.31 57 20.5 86 147.41
d = 6UMFPACK 0.5 17 3 23 41.73 28 392.59

0.7 23 4.08 34 61.76 45 633.19
1.0 35 6.19 58 105.52 90 1265.67

1.0,0.7,0.5,1.0 35 6.16 58 105.88 90 1261.79AMG 0.5 18 3.48 24 44.69 29 420.91
0.7 24 4.61 35 65.76 47 670.45
1.0 36 6.9 61 113.85 93 1313.96

1.0,0.7,0.5,1.0 36 6.88 60 111.57 93 1320.7

7.4.2 Block Symmetric Gauss-Seidel PreconditionerIn this section the same test problems presented in �7.4.1 are solved using a blocksymmetric Gauss-Seidel (bSGS) preconditioner for CG. The algorithm used in theexperiments is described in �4.5.3. A �xed number of iterations maxitb is used asstopping criteria for PbSGS, each iteration including a forward and backward sweep.Similarly to the linear case, maxitb = 1 is used for the experiments reported in thefollowing sections. The reason for this choice together with an in-depth analysis onthe performance of PbSGS for several values of maxitb is given in �7.4.2.



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 180Note that only experiments based on the symmetric version of the Gauss-Seidelalgorithm are presented in this chapter. In fact, the theory of the Conjugate Gradientmethod (Saad 2003) requires the preconditioner to be symmetric and positive def-inite. The implementation of a non-symmetric Gauss-Seidel preconditioner for CGis straightforward however it was decided to not carry out experiments using suchsolver as this would be inconsistent with theoretical concepts.The UMFPACK implementation of the block symmetric Gauss-Seidel precondi-tioner is straightforward and it is identical to the one used in Chapter 6. In con-trast, the AMG implementation is not straightforward and requires additional pre-processing to be implemented. In fact, di�erently from the linear case, the tensorproducts Gk ⊗Kk, k = 1, . . . , N , have several contributions to the blocks of the lead-ing diagonal of the coe�cient matrix, depending on the value of d and pu. So forexample, �xing d = 2 and pu = 3, the contributions are as followsTable 7.7: Gk ×Kk contributions to the blocks of the diagonal of A(i,j) Gk ×Kk

(1, 1)
(2, 2) G4(2, 2)×K4

(3, 3) G6 ×K6

(4, 4) (G4 ×K4) + (G11 ×K11)
(5, 5) (G4 ×K4) + (G6 ×K6) + (G13 ×K13)
(6, 6) (G6 ×K6) + (G15 ×K15)
(7, 7) (G4 ×K4) + (G11 ×K11) + (G22 ×K22)
(8, 8) (G4 ×K4) + (G6 ×K6) + (G11 ×K11) + (G13 ×K13) + (G24 ×K24)
(9, 9) (G4 ×K4) + (G6 ×K6) + (G13 ×K13) + (G15 ×K15)
(10, 10) (G6 ×K6) + (G15 ×K15) + (G26 ×K26) + (G28 ×K28)Note that the G1 matrix is diagonal and the product G1(i, j) ×K1 contains themean information (this is omitted from Table 7.7). In the linear case the AMGgrids are constructed only once, whereas for the nonlinear case the AMG grids haveto be computed for each block entries of the diagonal of the global system. Thusthe AMG pre-processing is implemented P times and the grids are stored before



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 181the iterative solution process begins. Clearly the preconditioner set-up time nowcontributes signi�cantly to the solver's CPU cost.To avoid repetition we refer the reader to �7.4.1 for details on the settings of eachtest problem.Test problem 1 - variable hThe iteration count and timings for CG preconditioned with a PbSGS are reportedin Table 7.8. The problem set-up time is listed in Appendix C (Table C.4).Table 7.8: CG iterations and solution timings for PbSGS - Test Problem 1

pu = 2 pu = 3 pu = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 1
32

3 0.48 3 1.77 3 8.79
1
64

3 1.46 3 6.76 3 28.61
1

128
3 8.9 3 29.51 3 117.07AMG 1

32
6 1.11 6 3.61 6 17.37

1
64

6 2.01 6 11.12 6 52.11
1

128
6 7.22 6 40.85 6 195.45

d = 6UMFPACK 1
32

3 0.92 3 9.6 3 74.58
1
64

3 3.84 3 31.85 3 229.6
1

128
3 17.5 3 129.57 3 901.89AMG 1

32
6 1.94 6 19.36 6 146.68

1
64

6 5.91 6 57.04 6 440.44
1

128
6 21.71 6 230.99 6 1, 765.36The results presented in Table 7.8 can be summarised as follows:1. The PbSGS preconditioner is signi�cantly more e�cient than Pbdiag . For exam-ple, for h = 1

128
solution times are reduced by as much as 48% for pu = 4, 40%for pu = 3 and 13% for pu = 2;2. The number of CG iterations is also reduced to about a third of that requiredusing a block-diagonal preconditioner;



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 1823. The preconditioner is not only h-optimal and d-optimal but also p-optimal;4. The UMFPACK version of the preconditioner is more e�cient than the AMGversion even without considering the CPU cost associated with the set-up time.If, however, we do consider the AMG set-up time, this is so large that it isactually larger than the actual solution time. Note that this applies to the non-linear case only. In fact results reported in Chapter 6, �6.2.2, for the linear caseshow that for �ne discretisations ( 1
128

) AMG is more e�cient than UMFPACK.Test problem 2 - variable σTables 7.9 and C.5 report CG iteration count and timings, and set-up times fortest problem 2.Table 7.9: CG iterations and solution timings for PbSGS - Test Problem 2
pu = 2 pu = 3 pu = 4

σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)
d = 4UMFPACK 0.3 4 0.87 4 2.44 5 14.95

0.5 6 0.65 7 4.28 8 23.9
0.7 8 0.86 10 6.11 12 35.8
0.9 10 1.07 14 8.53 18 53.73AMG 0.3 6 1.11 7 4.35 7 20.82
0.5 8 0.94 9 5.6 11 32.63
0.7 10 1.21 14 8.71 20 59.53
0.9 14 1.64 23 14.27 46 136.93

d = 6UMFPACK 0.3 4 1.27 4 13.11 5 123.46
0.5 6 1.91 7 22.9 8 198.15
0.7 8 2.55 10 32.62 12 297.21
0.9 11 3.51 14 45.85 19 473.32AMG 0.3 6 2 7 22.94 7 171.93
0.5 8 2.68 10 32.71 12 297.72
0.7 11 3.66 15 49.01 22 546.12
0.9 15 5 25 81.93 52 1279.58The results presented in Table 7.9 can be summarised as follows:



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 1831. The block symmetric Gauss-Seidel preconditioner shows a signi�cant improve-ment in terms of number of CG iterations. This improvement becomes moreevident for large values of standard deviation (σ);2. The comparison of the data with those of Table 7.5 (block-diagonal precondi-tioner) reveals that the Gauss-Seidel preconditioner is generally computationallycheaper and the improvement in performance increases with larger values of σ;3. Noticeably the di�erence in performance between the exact and approximateversions of the preconditioner increases for larger σ. In fact for σ = 0.9, theAMG solution times are approximately three times larger than for UMFPACK.Test problem 3 - discontinuous-isotropic conductivity �eldTables 7.10 and C.6 report CG iteration count and timings, and set-up times fortest problem 3 using a bSGS preconditioner.Similarly to test problem 2 a signi�cant improvement for both Nit and tCPU isachieved. A large saving in computational cost was recorded for higher polynomialorders and large δ. In fact the tCPU cost is reduced by 60% if compared with re-sults obtained using the Pbdiag preconditioner. Signi�cant time reduction is equallyachieved for lower polynomial orders and coe�cient of variation δ. This is around
37% for pu = 2 and δ = 0.5, and around 53% for pu = 3 and δ = 0.7.As previously observed for the Pbdiag preconditioner, it appears that the discon-tinuous conductivity coe�cient (jumps in the mean conductivity value at the sub-domains boundaries) does not worsen the preconditioner performance. It is in fact,the standard deviation which has a signi�cant negative impact on the performance ofboth Pbdiag and PbSGS. Not even using the PbSGS algorithm and therefore includingthe o�-diagonal blocks of A (which retain information on the �uctuations about the



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 184mean) can optimality of Nit with respect to σ be achieved.Table 7.10: CG iterations and solution timings for PbSGS - Test Problem 3
pu = 2 pu = 3 pu = 4

δ = σ
µ

Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)
d = 4UMFPACK 0.5 6 0.69 7 4.27 7 20.86

0.7 8 0.86 9 5.54 11 33.04
1.0 11 1.18 15 9.23 19 56.64

1.0,0.7,0.5,1.0 11 1.19 15 9.22 19 56.73AMG 0.5 7 0.91 8 4.97 10 29.7
0.7 9 1.06 12 7.46 16 47.59
1.0 14 1.67 23 14.43 48 143.13

1.0,0.7,0.5,1.0 14 1.67 23 14.42 48 143.13
d = 6UMFPACK 0.5 6 1.91 7 22.82 8 198.34

0.7 8 2.55 9 29.49 11 273.95
1.0 11 3.5 15 49.18 21 520.41

1.0,0.7,0.5,1.0 11 3.51 15 49.08 21 523.93AMG 0.5 8 2.68 9 29.45 10 245.42
0.7 10 3.38 13 42.49 18 440.4
1.0 16 5.41 27 89.2 55 1348.74

1.0,0.7,0.5,1.0 16 5.39 27 88.5 55 1345.02Performance AnalysisAs for the linear case, the experiments presented so far show that CG equippedwith a block symmetric Gauss-Seidel preconditioner is signi�cantly more e�cient thantraditional mean-based preconditioners. This conclusion depends on the stoppingcriteria chosen for the Gauss-Seidel algorithm. The results reported in this Chapter'stables are obtained using a maximum number of iterations, maxitb = 1, for the bSGSalgorithm. This means two sweeps per iteration, one forward and one backward toensure the symmetry of the preconditioner for CG.The choice of maxitb can be optimized. Consider test problem 2 with �xed pu = 4and run simulations for successively larger maxitb, maxitb = 1, 2, 3, . . ., until only



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 185one CG iteration is required for convergence. CG iteration count and timings forthese experiments with d = 4 and d = 6, are reported in Table 7.11. Note that forthis analysis the UMFPACK version of the preconditioner was used.Table 7.11: CG iterations and solution timings (sec.) for PbSGS for various values of
maxitb - Test Problem 2

maxitb σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9

d = 4 Nit tCPU Nit tCPU Nit tCPU Nit tCPU

1 5 14.95 8 23.90 12 35.79 18 53.72
2 3 13.26 5 22.11 8 35.42 13 57.57
3 2 11.79 4 23.50 7 41.14 10 58.79
4 2 14.48 4 29.00 6 43.47 9 65.13
5 2 17.39 3 26.10 5 43.45 8 69.51
6 1 10.07 3 30.13 4 40.38 7 70.65
8 1 12.99 2 25.87 4 51.83 6 77.51
14 1 21.54 1 21.54 3 64.56 4 86.06
32 1 47.26 1 47.14 1 47.17 3 141.50
75 1 108.45 1 108.56 1 108.29 1 108.17

d = 6
1 5 123.46 8 198.15 12 297.21 19 473.32
2 3 108.02 5 180.14 9 322.50 14 505.53
3 2 93.71 4 188.48 7 329.93 11 518.46
4 2 115.72 4 233.33 6 348.50 10 580.29
5 2 138.72 3 208.24 5 347.25 8 557.42
6 1 80.55 3 244.95 5 400.84 8 645.87
8 1 102.93 2 205.71 4 410.97 7 719.04
14 1 169.66 1 170.22 3 509.89 5 849.04
34 1 393.42 1 394.49 1 392.42 3 1173.16
80 1 899.37 1 906.18 1 905.44 1 905.81The results reported in Table 7.11 suggest that the best solution times are notgiven by the same stopping criteria for all values of σ. In fact it appears that forlarge standard deviations σ = 0.7, 0.9 the best solution timings are obtained for small

maxitb. However, for small values of σ = 0.3, 0.5, the best timings are given by verylarge maxitb.The case in which maxitb is large and tCPU is low corresponds to the situation inwhich convergence is obtained in one CG iteration. It is clear that in this circumstancethe bulk of the computational work is done by the preconditioner (bSGS ) and very



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 186little by the main solver (CG). Given that the preconditioner should only serve asa means to improve the conditioning of the system matrix, the results showing justone CG iteration are not considered in the following analysis. On the other hand,this aspect reveals that an independent Gauss-Seidel (symmetric or not) solver couldbe a very e�cient alternative to Krylov subspace iterative schemes. In �7.4.3 resultsobtained using Gauss-Seidel solvers are reported for all test problems considered inthis Chapter.
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(b) d = 6Figure 7.6: Performance analysis of CG preconditioned with PbSGS for Test Problem
2 Excluding the data associated with one CG iteration, Table 7.4 shows that, ingeneral, a small number of internal iterations for the PbSGS preconditioner are su�-cient to achieve the best performance for all values of standard deviation consideredfor this test problem. However it is only for σ = 0.9 (d = 4, 6) and σ = 0.7 (d = 6),that the best performance is achieved using maxitb = 1. For σ = 0.5 (d = 4, 6)and σ = 0.7 (d = 4), the best performance is given by maxitb = 2, and for σ = 0.3(d = 4, 6), for maxitb = 3.



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 187Figures 7.6a and 7.6b show CG iterations versus CPU times formaxitb = 1, 2, 3, 4, 5, 6for d = 4 and d = 6, respectively. The �gures highlight that there is a clear linearrelationship between the number of CG (preconditioned with PbSGS) iterations, com-putational time and the standard deviation of the spatial random �eld for all valuesof maxitb. As for the linear case, both �gures clearly show that the best convergencerate is given by maxitb = 1 and this is the reason why it was chosen as the optimalstopping criteria for the PbSGS preconditioner.7.4.3 Gauss Seidel SolversThe performance analysis carried out on test problem 2 in the previous sectionrevealed that for small standard deviation (σ = 0.3 and σ = 0.5) the Gauss-Seidel al-gorithm used as standing alone solver could be a valid alternative to Krylov subspacesolvers for the solution of SFEM systems with lognormal conductivity coe�cient. Thesame observation was obtained for the linear case (normal or uniform conductivity co-e�cient) in Chapter 6. In this section we present results obtained by block symmetricGauss-Seidel solver (bSGS ) and non symmetric Gauss-Seidel solver (bGS ). We aimto show in what circumstances Gauss-Seidel solvers are more e�cient than Krylovsubspace solvers.As for the linear case, the symmetric Gauss-Seidel solver includes a forward and abackward sweep per iteration and the algorithm is essentially the one used for PbSGS.The non-symmetric case only includes a forward sweep per iteration. In both casesthe stopping criteria is determined by the error norm satisfying a speci�c tolerance.The considerations on the re-ordering of the block structure of A, pointed out inChapter 6 for the linear case, may not be valid for the nonlinear case. In fact most re-orderings aim at reducing the bandwidth of the coe�cient matrix which is irrelevant



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 188for the lognormal case given that A is block dense. In our implementation we retainthe structure as presented in Figure 7.1 and obtained by the summation of progressive(i = 1, . . . , N) Kronecker terms (see (7.3)). This ordering is the most natural as itrepresents the summation of decreasing modes obtained from the polynomial chaosexpansion of the conductivity coe�cient (see (7.1)).As for CG, the tolerance for the GS solvers is set to 10−8. In each table we listiteration count Nit and solution times tCPU for both bSGS and bGS. Only experimentsusing UMFPACK to invert the diagonal blocks of A are reported.Test Problem 1 - variable hTable 7.12 lists iteration count and solution times for test problem 1. Results fromthis table are summarised as follow:1. Gauss-Seidel solvers are also optimal with respect to the discretisation param-eter h;2. Both bSGS and bGS are computationally more e�cient than CG with either
Pbdiag or PbSGS preconditioners. The improvement is considerably more signi�-cant than for the linear case (see �6.2.3);3. The bGS solver is computationally more e�cient than the symmetric imple-mentation.Test Problem 2 - variable σTable 7.13 lists iteration counts and timings for test problem 2. The �ndings ofthis table are summarised as follows:1. GS solvers are not optimal with respect to σ;
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pu = 2 pu = 3 pu = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4bSGS 1
32

4 0.28 4 1.24 4 5.46
1
64

4 1.38 4 5.15 4 18.7
1

128
4 8.11 4 24.3 4 82.39bGS 1

32
5 0.18 6 0.93 6 4.08

1
64

6 1.05 6 3.85 6 14.03
1

128
6 6.86 6 18.34 6 61.77

d = 6bSGS 1
32

4 0.71 4 6.09 4 43.57
1
64

4 3.23 4 20.92 4 136.23
1

128
4 15.97 4 92.94 4 563.08bGS 1

32
5 0.46 6 4.56 6 32.52

1
64

6 2.6 6 15.76 6 101.74
1

128
6 11.95 6 68.84 6 415.432. bSGS is computationally more e�cient than CG preconditioned with PbSGSonly for small standard deviations;3. Non-symmetric Gauss-Seidel solver (bGS ) is very e�cient for small and mod-erate standard deviations. However, for large values of σ it is outperformed byCG preconditioned with PbSGS;4. As for the previous case, the bGS solver is consistently more e�cient than thesymmetric implementation.Test problem 3 - discontinuous-isotropic conductivity �eldTable 7.14 lists iteration count and timings for test problem 3. Similar observationsto the ones highlighted for test problem 2 are derived from the data presented in thistable. Furthermore the results show that a discontinuous conductivity �eld has nonegative impact on the performance of Gauss-Seidel solvers. This becomes evident if
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pu = 2 pu = 3 pu = 4
σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4bSGS 0.3 8 0.58 9 2.91 9 12.6
0.5 13 0.92 16 5.2 19 26.72
0.7 21 1.47 30 9.68 41 57.33
0.9 33 2.31 54 17.45 86 120.64bGS 0.3 9 0.32 11 1.77 12 8.38
0.5 15 0.53 20 3.23 25 17.54
0.7 23 0.82 36 5.83 53 37.15
0.9 35 1.25 65 10.42 110 77.24

d = 6bSGS 0.3 8 1.48 9 14.06 9 99.5
0.5 13 2.4 17 26.6 20 220.36
0.7 22 4.06 31 48.47 43 470.07
0.9 35 6.45 59 92.13 96 1057.31bGS 0.3 9 0.84 11 8.61 12 66.24
0.5 15 1.39 20 15.66 25 138.46
0.7 23 2.12 36 28.1 53 291.58
0.9 35 3.23 65 50.82 111 610.59we compare Nit for δ = 0.5 for this problem with that of test problem 2 (continuousconductivity coe�cient) for σ = 0.5 (which corresponds to δ = 0.5

1
).7.5 Comparison and ConclusionsIn the previous sections a large number of methods have been tested to identify themost e�cient solver for the stochastic formulation of the di�usion problem (nonlinearcase). To identify the methods which are the most e�cient and robust with respectto h, σ and discontinuous µ, the data presented in the previous tables are summarisedin Figures 7.7, 7.8 and 7.9. Only the case for p = 4 is considered and d = 4, 6. Themethods included in the �gures are listed below.
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pu = 2 pu = 3 pu = 4
δ = σ

µ
Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4bSGS 0.5 11 0.78 13 4.2 14 19.64
0.7 17 1.2 23 7.41 29 40.68
1.0 32 2.25 53 17.09 84 117.66

1.0,0.7,0.5,1.0 32 2.24 53 17.07 84 118.49bGS 0.5 12 0.43 15 2.43 17 11.97
0.7 17 0.6 25 4.07 33 23.32
1.0 30 1.06 53 8.59 87 61.46

1.0,0.7,0.5,1.0 30 1.07 53 8.58 87 61.11
d = 6bSGS 0.5 11 2.04 13 20.29 15 178.55

0.7 18 3.33 24 37.48 31 343.28
1.0 35 6.47 58 90.76 95 1048.38

1.0,0.7,0.5,1.0 35 6.45 58 90.82 95 1049.12bGS 0.5 12 1.12 15 11.73 17 94.08
0.7 17 1.58 25 19.58 34 187.85
1.0 30 2.79 53 41.42 96 529.96

1.0,0.7,0.5,1.0 30 2.79 53 41.48 96 533.871. CG with Pbdiag (AMG)2. CG with Pbdiag (UMFPACK )3. CG with Pmean (AMG)4. CG with Pmean (UMFPACK )
5. CG with PbSGS (UMFPACK )6. bSGS (UMFPACK )7. bGS (UMFPACK )Note that for the AMG case the time required to construct the grids and smootherfor the approximation is added to the solution times. The UMFPACK case does notrequire any set-up time.Figure 7.7 shows the block Gauss-Seidel solvers (both bGS and bSGS ) are the moste�cient for all discretisations levels. Among the CG solvers the one preconditionedwith PbSGS is the one that performs better both in terms number of iterations andcomputational time.



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 192Similarly to the linear case, Figures 7.8 and 7.9 show that the conjugate gradientsolver preconditioned with PbSGS is the most e�cient method for problems withmedium / large standard deviation and discontinuous conductivity. Gauss-Seidelsolvers also perform well in these circumstances and for small σ they are in fact thebest-performing methods.Mean-based preconditioners are, in general, not robust and e�cient for SFEMwith lognormal distributions. There is very little di�erence in terms of performancebetween the AMG and UMFPACK versions of the preconditioner.The outcome of this analysis reveals that CG preconditioned with PbSGS performswell in all settings considered in this work and therefore should generally be used forthe solution of SFEM with lognormal distributions. Gauss-Seidel solvers represent avalid alternative to Krylov subspace iterative methods.7.6 SMFEM solvers7.6.1 Schur complement preconditionerThis section reports the performance of preconditioned MINRES (cf. Chapter 6).The preconditioner used is the one described in �4.6.2. As usual the Schur complementis computed exactly (using e.g. UMFPACK ) or approximated using one V-cycle ofAMG code.Test problem 1 - variable hThe settings for this test problem are described in �5.2.1. Table 7.15 reports thesize of the stochastic space P , the number of Kronecker products N and the totalnumber of unknowns for each level of discretisation. Note that pL is chosen so thatthe positive-de�niteness of A is guaranteed, i.e. pL = 2pu.



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 193The size of the problem is the same as for the linear case (see Table 6.12). However,
A is denser having non-zero contributions for each block.Table 7.15: Dimensions of P , N and total number of unknowns - SMFEM

pu = 2 pu = 3 pu = 4

d = 4
P 15 35 70
N 70 210 495

h = 1
32

77, 760 181, 440 362, 880
h = 1

64
309, 120 721, 280 1, 442, 560

h = 1
128

1, 232, 640 2, 876, 160 5, 752, 320
d = 6

P 28 84 210
N 210 924 3, 003

h = 1
32

145, 152 435, 456 1, 088, 640
h = 1

64
577, 024 1, 731, 072 4, 327, 680

h = 1
128

2, 300, 928 6, 902, 784 17, 256, 960Table 7.16 reports MINRES iteration count and timings for test problem 1. Thetable reports results for experiments carried out using the exact version (UMFPACK )of the PSchur and the approximated version (AMG). The set-up times for the problemand the preconditioner are reported in Appendix E (Table E.4). The set-up for thepreconditioner, i.e. the CPU cost of constructing the coarse grids for K0, is performedonly once.The results included in Table 7.16 can be summarised as follows:1. The Schur complement preconditioner is optimal or almost optimal with respectto h and d. However, there is a small increase in the number of iterations forincreasing p;2. It is more di�cult to de�ne which version of the preconditioner is more e�cient.This seems to depend not only on h but also on the number of random variables,
d, used for the underlying Gaussian �eld. For d = 6 the exact version of thepreconditioner is more e�cient than the AMG version. For d = 5 (not shown



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 194in Table 7.16) the timings are almost equivalent. Finally, for d = 4 the AMGversion is more e�cient for �ne discretisations and less for coarser ones.Table 7.16: MINRES iterations and solution timings for Pscomp - Test Problem 1

pu = 2 pu = 3 pu = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 1
32

43 4.92 44 28.74 47 179.78
1
64

43 19.32 45 85.95 47 390.46
1

128
43 109.09 45 443.3 48 1, 845.48AMG 1

32
45 5.04 48 31.07 49 186.07

1
64

45 15.51 48 79.58 51 401.18
1

128
47 76.85 49 381.69 51 1, 746.01

d = 6UMFPACK 1
32

43 18.06 45 362.89 47 6, 372.67
1
64

43 56.12 45 639.56 48 8, 547.29
1

128
43 275.82 45 2, 178.21 48 19, 837.92AMG 1

32
45 18.39 48 379.57 50 6, 784.32

1
64

47 48.77 49 641.55 52 8, 953.65
1

128
47 214.76 49 2, 124.69 52 20, 740.76Note that for h = 1

128
and d = 6 solving the non-linear case (Lognormal �eld) issixteen times more expensive than the linear case (Gaussian �eld) (see Table 6.13).Test problem 2 - variable σThe settings for test problem 2 are described in �7.4.1. The performance of theSchur complement preconditioner for varying σ is reported in Table 7.17. As for theprevious case the set-up time for the preconditioner is performed only once. This isreported in Table E.5 together with the set-up timings for the test problem itself.The results reported in Table 7.17 can be summarised as follows:1. MINRES performance deteriorates signi�cantly for increasing values of σ. Thisis in line with all methods considered in this thesis. However for the non-linearcase, the usage of SMFEM becomes impractical. In fact, the experiments show
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pu = 2 pu = 3 pu = 4
σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 0.3 62 7.32 75 49.05 86 330.55
0.5 92 10.42 127 83.82 171 660.2
0.7 136 15.71 226 149.58 346 1, 345.68
0.9 206 23.47 397 262.34 698 2, 710.47AMG 0.3 67 7.91 80 52.42 93 357.58
0.5 97 11.13 136 88.92 182 700.29
0.7 145 16.73 238 157.69 368 1, 422.33
0.9 218 25.08 420 276.29 733 2, 846.35

d = 6UMFPACK 0.3 63 25.94 76 617.75 89 12, 009.58
0.5 95 39.68 134 1, 079.71 180 24, 329.95
0.7 143 59.29 237 1, 902.71 370 51, 069.64
0.9 216 90.11 424 3, 418.43 753 103, 277.29AMG 0.3 67 27.6 81 659.43 94 13, 927.52
0.5 100 41.21 141 1, 140.65 190 26, 151.63
0.7 150 61.97 249 2, 007.98 385 53, 101.14
0.9 227 94.27 440 3, 577.61 783 108, 174.47that for σ = 0.9 it takes more than 30 hours to solve the stochastic linear systemfor a very coarse discretisation (h = 1

32
);2. The performance of the AMG and UMFPACK versions of the Schur complementpreconditioner is similar.Additionally it should be noted that for σ = 0.7, the CPU cost of solving testproblem 2 with lognormal conductivity coe�cient is about 170 times larger thanusing uniformly distributed spatial random �elds (see Table 6.14).Test problem 3 - discontinuous-isotropic conductivity �eldAs has already been shown for other methods, the performance of the solver andpreconditioners are not a�ected by spatial discontinuities in the conductivity �eld.



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 196In fact the timings reported in Table 7.18 are comparable to those reported for thecontinuous test problem in Table 7.17.Table 7.18 shows that the solver performance depends on the largest value of δincluded in the domain. So, for example, for the case of variable δ (di�erent coe�-cients of variation for the four sub-domains), MINRES performance is fully governedby the largest value of δ, i.e. δ = 1.0. In fact the timings are almost equivalent tothe case of constant δ = 1.0 for all sub-domains.Table 7.18: MINRES iterations and solution timings for Pscomp - Test Problem 3

pu = 2 pu = 3 pu = 4
δ = σ

µ
Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4UMFPACK 0.5 88 10.12 122 80.44 161 620.97
0.7 130 14.88 211 139.07 316 1, 226.72
1.0 235 27.15 474 314.05 864 3, 338.6

1.0,0.7,0.5,1.0 235 27.03 473 314.9 864 3, 360.14AMG 0.5 92 10.44 128 83.65 170 651.08
0.7 136 15.55 222 145.62 333 1, 294.75
1.0 247 28.29 499 329.87 898 3, 468.6

1.0,0.7,0.5,1.0 247 28.39 498 327.16 898 3, 484.89
d = 6UMFPACK 0.5 91 38.03 126 1, 013.49 170 23, 547.75

0.7 135 56.16 223 1, 814.07 341 47, 604.68
1.0 250 104.13 513 4, 173.31 940 129, 394.1

1.0,0.7,0.5,1.0 250 104.89 513 4, 154.09 939 131, 601.3AMG 0.5 94 38.97 132 1, 062.56 177 24, 152.55
0.7 141 58.36 231 1, 870.85 355 49, 131.72
1.0 259 108.41 533 4, 334.59 984 136, 578.2

1.0,0.7,0.5,1.0 259 107.6 532 4, 287.98 984 136, 140.52

7.6.2 ConclusionsWhilst it was concluded that the performance of MINRES equipped with theSchur complement preconditioner described in (4.57) is acceptable for the solutionof the stochastic mixed formulation (linear case), the same cannot be concluded for



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - NonlinearStochastic Case 197the non-linear case. The experiments reported in Tables 7.17 and 7.18 show that theCPU cost is too large (30 hours to solve test problem 2 on a coarse mesh, h = 1
32
) forthis method to be e�ectively used with lognormal random �leds.It becomes apparent that for the non-linear case it is crucial to include informationcontained in the o�-diagonal blocks of the coe�cient matrix into the preconditionedsystem. As already mentioned in Chapter 6, the Kronecker product preconditionerof Ullmann (2008) o�ers this possibility. Very recently (Powell & Ullmann 2010) ex-tended its implementation to the non-linear case achieving a signi�cant improvementin MINRES CPU cost. The authors also proposed H(div) preconditioning using aug-menting schemes which, although being dependent on the choice of the augmentationparameter, seem to achieve very promising results.Research in the area of fast iterative solvers for stochastic saddle-point systems isstill at the early stages. The ideas proposed in �6.4.2 for the linear case are equallyvalid for the non-linear case and deserve attention as possible future directions forresearch.
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(b) d = 6Figure 7.7: Comparison of methods for the solution of SFEM for test problem 1
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Chapter 8
Cardi� Bay Case Study
8.1 IntroductionIn this chapter the numerical methods presented in the previous chapters areutilised to approximate the distribution of head potential and groundwater velocitiesin an actual site in the United Kingdom. The location which was selected as a suitablecase study is the area surrounding and including the city of Cardi�, capital of Wales.The extent of the site, which covers approximately an area of 15 km2, is shown inFigure 8.1.Among the reasons this site was selected as a case study are its accessibility andthe invaluable support given by the students and lecturers of the MSc course in hy-drogeology at the School of Earth and Ocean Sciences in Cardi� University. This site,in fact, has been used over the years for educational purposes in various hydrogeologycourses taught in the Master programme. Hence, an extensive understanding of thearea was readily available in the department.More importantly, given the limited extent of the site, the area is unusually richin �eld data. This is the result of intense �eld work carried out in Cardi� and201
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© Crown Copyright Ordnance Survey. An EDINA Digimap / JISC supplied service.Figure 8.1: Location of study areasurroundings pre- and post-impoundment of the barrage across the mouth of Cardi�Bay, in the early nineties. The threat of a rise in groundwater levels underlyingsouth Cardi� as a consequence of the installation of the barrage and impoundmentof a freshwater lake, lead to the construction of a large groundwater monitoringsystem comprising 236 automated data loggers (Williams 2008). The constructionof the barrage itself was supported by an extensive drilling programme from whichgeological information can be used to construct an accurate geological model for thearea.Furthermore, there exists a groundwater model for the area, developed by Hy-drotechnica Ltd. / Entec Ltd., which was used to undertake feasibility studies, pre-ceding the impoundment of the barrage. Although it was not possible to obtain the



Chapter 8: Cardi� Bay Case Study 203numerical model, the conceptual characterisation of the study area and a detaileddescription of the model construction are described in HYDROTECHNICA (1991),Heathcote et al. (1997, 2003).8.1.1 Scope of Groundwater Model DevelopmentThe numerical model we aim at developing for the Cardi� Bay area has the pri-mary aim to show that the methodologies presented in the previous chapters can beused for real applications. In particular the aim is to build a groundwater modelwhich can replicate, as close as possible, the distribution and movement of groundwa-ter in Cardi�. The mathematical models used are those described by (2.1) and (2.2)for the deterministic case and (4.1) and (4.2) for the stochastic case.We will present results for the case in which the model is fully deterministic(transmissivity is known with certainty everywhere in the model domain), and thecase in which the transmissivity is described by its mean value and standard deviation(transmissivity is a stochastic process). When the transmissivity is described as astochastic process the source of uncertainty can be associated with the thickness ofthe aquifer, the hydraulic conductivity or both. Each of the three cases is analysed.The case whereby the recharge is a stochastic process is not considered in thiswork. However the extension of the existing models to the case in which the sourceterm is uncertain is a straightforward matter.The conceptual model for urban groundwater models, such as the one we intend todevelop for Cardi�, can be extremely complex and could include a numerous amountof hydrogeological features which require extensive data analysis and preparation.As our goal is testing and validating the numerical methodologies presented in thisthesis, we adopt a simpli�ed version of the conceptual model. Nevertheless, complex-



Chapter 8: Cardi� Bay Case Study 204ity can be increased during subsequent stages of model development. Although theconceptual model is simple, all the important hydrological / hydrogeological featuresare considered, making it physically sound.8.2 Data Collection and Site Characterisation8.2.1 LocationThe site is located in the South Wales region and includes the urban and partof the suburban developments of the city of Cardi�. The study area is bounded bythe coast-line and the Cardi� Bay area in the south. The rivers Ely and Rhymneyconveniently de�ne the western and eastern boundaries and the A48 approximatelyde�nes the northern limit of the site.The area is crossed by the river Ta� discharging, similarly to the Ely river, intothe Cardi� Bay area. The river Rhymney discharges into the Severn Estuary (seeFigure 8.1).8.2.2 History and LanduseThe city of Cardi� has undergone signi�cant changes in landuse and landscapeduring the last century. An outstanding review of Cardi� development is given byGordon et al. (2004). The increase in global demand for Welsh coal resulted inCardi� growing as a coal port starting from the beginning of the 19th century. Inless than seventy years the city witnessed the development of seven di�erent docks,starting with Bute West Dock in 1838 and culminating with the construction of QueenAlexandra Dock in 1907.The rapid development of Cardi� harbour corresponded to a dramatic increase



Chapter 8: Cardi� Bay Case Study 205in industrial activities in the the Dockland area. Extensive steel and iron works de-veloped in the East Moors area where the elevation of the ground surface was raisedprogressively with slag and ash as the works developed and tipping extended out to thepresent day coastline (Gordon et al. 2004). Other major industries developed aroundthe dockland area including a major gasworks, heavy engineering, paper manufac-turing, oil storage terminals and shipbuilding (�gures illustrating the development ofheavy industries in Cardi� Bay can be found in Gordon et al. (2004), Deane (2010)).This period of intense industrial growth saw several areas in Cardi� Bay beingtipped with domestic refuse, demolition debris and material from construction sites.Remarkable examples are the western area of the city where the River Ely used to bemeandering, but between 1954 and 1976, the meanders were cut o� and in�lled andthe area of Ferry Road where the existing gentle hill around 25m high is constructedentirely of domestic refuse.The dockland area experienced a severe period of decline starting from 1920's dueto the fall in the demand of Welsh coal. The whole area of Cardi� Bay soon be-came disused and derelict. A second major phase of uncontrolled in�lling is recordedbetween 1950's and 1960's, where several of the disused docks were in�lled with in-dustrial and domestic waste.The initial plans to regenerate the dockland area date back to the 1980s. The ideaof creating a barrage and impound a freshwater lake at 4.5 mAOD in the bay wasconceived in 1993 with the Cardi� Bay Barrage Act. It became immediately evidentthat the proposed plan could have led to the rise of groundwater levels beneath thecity above normal levels therefore causing potential for extensive �ooding. As a re-sult provisions were incorporated into the Cardi� Bay Barrage Act including amongstothers, a requirement to monitor groundwater before, during and after constructionand to consider its control (Williams 2008). The latter was implemented by a se-



Chapter 8: Cardi� Bay Case Study 206ries of pumped vertical wells, pumped horizontal collectors and �eld drains in areasconsidered particularly at risk from �ooding (Williams 2008, Sutton et al. 2004).The Cardi� Bay Barrage was impounded in November 1999 and completed inMarch 2000. Since then the areas surrounding the Bay have undergone extensiveregeneration and is now home to some prestigious buildings such as the Senyedd, theOlympic Village and the Millennium Centre, as well as large volumes of residential,retail and leisure developments. Today, Cardi� still has a working port with threeoperational docks. The East Moors are a heavily industrialised area with a largeindustrial estate, sewerage works and the metal works. A detailed landuse map ofmodern Cardi� is provided by Deane (2010).8.2.3 Geology8.2.4 Bedrock GeologyThe bedrock geology in the Cardi� Bay area is illustrated in Figure 8.2. Thiscomprises the Triassic formation of the Mercia Mudstone group. The sequence isdominated by mudstone but includes a wide range of lithologies ranging from sti�clay to sandstones (Gordon et al. 2004). The vertical and horizontal pro�les are highlyvariable with large di�erences occurring over small distances.As pointed out in Edwards (1997), the top surface of the Mercia Mudstone has aprominent topography with distinct features. Its surface is very close to the groundsurface along the southern part of the river Ely, and in some instances it forms thewestern bank of the river. The super�cial deposits terminate suddenly against theriver bank.In the northern region of Cardi� the Mercia Mudstone is at or close to outcrop.The continuity of post-glacial super�cial deposits is interrupted at several locations
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Legend

CAE CASTELL FORMATION

CARDIFF GROUP

LAVERNOCK SHALES MEMBER

MERCIA MUDSTONE GROUP

MERCIA MUDSTONE GROUP (MARGINAL FACIES)

PEN-Y-LAN MUDSTONE

PENARTH GROUP

PORTHKERRY MEMBER

WENLOCK ROCKS AND LUDLOW ROCKS (UNDIFFERENTIATED)Figure 8.2: Bedrock geology in Cardi� Bay and surroundingsby hills of Triassic and Silurian formations. The area has been also structurally veryactive with faulting systems having a signi�cant in�uence on the elevation of thebedrock surface. Further information on the faulting systems existing in the northernregion of Cardi� is found in Edwards (1997).Of the 744 borehole logs analysed, 573 fully penetrate the super�cial depositsand reach the bedrock. For the purpose of this work a large database gathering allgeological information was created. The top surface of the Mercia Mudstone, obtainedby interpolating the elevations collected from the geological logs, is displayed in Figure8.3. The �gure also includes the location of the data upon which the interpolationwas made. According to this analysis the elevation of the bedrock ranges from 30mAOD, in the area of Llanda� and Gabalfa west of the River Ta� and the area of



Chapter 8: Cardi� Bay Case Study 208Maindy, to −15 mAOD in the Cardi� Bay region. Its depth from the ground levelranges from < 1 m to 15 m.
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Legend

Geological boreholes

Top surface Mercia Mudstone

mAOD

High : 37.65

Low : -15.4298Figure 8.3: Top surface (mAOD) of Mercia Mudstone and location of geologicalboreholesThere are several buried valleys in the urban area. The most important are thosefollowing the actual river courses of the Ely and Ta�.Hydraulic CharacterisationThere is evidence of the presence of a sandstone layer in the lower part of theMercia Mudstone, which has been used for water supply in the past. The upperpart, however, is mainly constituted of marl and blocky siltstone, hence acting asan aquiclude, preventing a signi�cant hydraulic connection between the water in thesandstones and the super�cial deposits.



Chapter 8: Cardi� Bay Case Study 209Although the water in the lower sandstone can be considered partly isolated,evidence of water circulation in the upper part of the Mercia Mudstone has beenreported (HYDROTECHNICA 1991). Few boreholes, in the northern region of thesite have recorded water levels and therefore the absence of groundwater movementcannot be discounted completely.In general, the Mercia Mudstone can be considered as an impermeable base tothe groundwater system in the Cardi� area. The evidence of water circulation inthe upland areas around the periphery of the site cannot be discarded completely.Hence a relatively small portion of the upper part of the Mercia Mudstone shouldbe considered possessing water yielding properties. From a practical point of view, anumber of borehole logs recording weathering and solution cavities in the upper partof the bedrock were identi�ed. These were subsequently used to delineate an areawhich should be considered as part of the main aquifer present in the site.8.2.5 Super�cial GeologySuper�cial deposits overlay the top of the Mercia Mudstone and cover most of thestudy area. Their distribution is illustrated in Figure 8.4 and can be distinguishedin river gravel and �uvio-glacial gravel. The latter is a remnant of a �uvioglacialoutwash fan dating from the end of the Devensian glaciation (Gordon et al. 2004),covering most of the area, except where the bedrock outcrops and in the area ofCardi� East Moors and Roath Dock (Edwards 1997). The deposits are dense, poorlysorted, sandy gravels with cobbles. Gordon et al. (2004) shows the elevation of thegravel deposits and highlights those areas where thicknesses are greater than 7 m.These cover a signi�cant portion of the site and remarkably locate what appears tobe a meltwater channel (roughly corresponding to the actual Ta� Valley) in�lled with



Chapter 8: Cardi� Bay Case Study 210outwash deposits achieving thicknesses comprised between 7 m - 12 m.
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MADE GROUND

TUFA

ALLUVIUM

BEACH DEPOSITS

GLACIOFLUVIAL SHEET DEPOSITS, DEVENSIAN

TIDAL FLAT DEPOSITS

TILL, DEVENSIAN

Figure 8.4: Super�cial geology in Cardi� Bay and surroundingsSouth of the main railway line, the gravel deposits are overlain by a sequenceof organic rich clays with subordinate silts, sands and gravels, dominated by soft tovery soft clays (Gordon et al. 2004), which are generally referred to as alluvium. It isreported by Allen & Rae (1987) that this lithology was deposited along the margins ofthe Severn Estuary during the post-Devensian sea level rise. This post-glacial depositis typical of the super�cial geological sequence of the areas surrounding the SevernEstuary. A common feature of the alluvium is the presence of peat, generally locatedat the base of the transgressive deposits re�ecting gradual inundation of the coastalplain (Harris & Turner 2005).The alluvium is only present in the region south of the Swansea-Newport railway



Chapter 8: Cardi� Bay Case Study 211line. In this area it achieves thicknesses of 12 m in places (Sutton et al. 2004) andthe upper part of the deposit is generally weathered. The alluvium is cut through bythe river channel of the Ta� and the docks. However it appears to be intact for thechannel of the River Ely.In addition to estuarine alluvium there are very �ne sediments of more recentorigin, deposited by the two main rivers in the area. These are poorly to moderatelywell laminated dark grey clays and silts. Stanley (1995) provided evidence that theseare often contaminated with coal, ash, clinker, wood and also marine diatoms.In the region north of the railway line, there are two distinct glacial tills, oneabove and one below the �uvio-glacial gravel deposits. Particularly in the northernregion the Lower Till deposit is often indistinguishable from the weathered upper partof the Mercia Mudstone. The description reported for the two lithologies are oftenused in an interchangeable manner in the inspected geological logs. Similarly thetills are occasionally di�cult to distinguish from the �uvio-glacial gravels, with whichthey are partly contemporaneous (Edwards 1997). As illustrated in Figure 8.4, thetill deposits increasingly dominate the succession in the northern part of the coastal�oodplain.Hydraulic CharacterisationThe river gravels, �uvio-glacial gravels and sandy tills form a widespread aquifer,which is the most important in the area. Results from a number of aquifer tests (seeHYDROTECHNICA (1991) for details) suggest a typical hydraulic conductivity of
50 m/d. This value is characteristic of the central region of the site where the gravelis very thick. Lower values are probably more appropriate in the northern regionwhere the gravel pinches out and in the area around Cardi� East Moors, where theaquifer is formed by thin deposits of till or weathered Mercia Mudstone.



Chapter 8: Cardi� Bay Case Study 212The gravel is con�ned by the overlain alluvium deposit over most of the area southof the Newport-Swansea railway line. This area is characterised by downward gradi-ents, whereby the water in the made ground moves slowly downwards to the gravelaquifer. This regime is stable in those locations where the alluvium is considerablythick, thus acting as aquiclude. However in those areas where the alluvium is thinor absent there exist upward hydraulic gradients. This aspect was of concern beforeand after the construction of the barrage and impoundment of a freshwater lake inCardi� Bay. In fact one of the recognised risks associated with that developmentwas the widespread establishment of upward hydraulic gradients as consequence ofthe new hydraulic regime. An exception to the con�ned regime are the lower channelof the Ta� and the entrance channels to the Queen Alexandra Dock, at those loca-tions the alluvium has been eroded away therefore exposing the gravel aquifer to tidalin�uences (Gordon et al. 2004, Heathcote et al. 2003).In the northern region of the study area the gravel is largely uncon�ned. Thealluvium, in fact, is limited to small areas where localized con�ning regimes are likelyto exist.Groundwater �ow in the alluvium deposit is limited but not completely absent.Hydraulic conductivities have proven di�cult to determine. Laboratory testing gavean average value of 1.74× 10−5 m/d, but �eld pumping tests suggested a range from
2.5× 10−3 to 1.2× 10−1 m/d (Heathcote et al. 2003).8.2.6 Made GroundThe made ground is a very discontinuous lithology overlying the alluvium (seeFigure 8.4). It varies from a thin layer of soil / building refuse / weathered rock,particularly in the north of the area, to much more substantial thickness, up to 14



Chapter 8: Cardi� Bay Case Study 213m, at some locations south of Cardi�. Fill materials vary widely in nature anddistribution and there are no detailed maps from which the type of the �ll can bedetermined (Edwards 1997).Gordon et al. (2004) suggests that some �ll is directly related to the industryworking there at the time, therefore the East Moors have made ground consisting ofslag and ash from the iron and steel industry. Other areas were raised using materialsfrom the valley industries such as sandstone quarry waste, colliery spoil, ash anddomestic waste. Some of the material came from excavating the docks themselves.The made ground possesses a very short scale of variability. The lack of informa-tion on the type and /or distribution of the �lling material makes its characterisationextremely di�cult.Hydraulic CharacterisationThe made ground forms a water-bearing layer, however it is spatially very discon-tinuous and its yield is very poor. As reported in HYDROTECHNICA (1991), Ltd.(1996), water in the made ground is encountered in many locations at shallow depth.The head potential is almost consistently above those recorded for the gravel aquifer,con�rming the existence of downward vertical hydraulic gradients between the twounits.The hydrogeologic regime was stable before the impoundment of the freshwaterlake at a constant level of 4.5 m in the bay area. The risk of inverting the hydraulicgradients at some locations, with possible impacts on houses and basements, deter-mined the installations of groundwater control systems in speci�c areas considered tobe vulnerable.Given the extreme variability of the made ground and the lack of knowledge aboutits nature and distribution, accurate estimates of its permeability are very di�cult



Chapter 8: Cardi� Bay Case Study 214to obtain. Various tests have been carried out including trenches and pits. Theanswers however are very di�erent, sometimes contradictory. The Hydrotechnicareport HYDROTECHNICA (1991) suggests that the hydraulic conductivity variesover at least one order of magnitude and values of 1 m/d upwards are recommended.8.3 Hydrology8.3.1 RainfallThe average annual rainfall in Cardi� is approximately 1076 mm/yr, based onlong term average MET O�ce data. Studies by Ltd. (1996), have revealed that thereare signi�cant di�erences in the amount of rainfall experienced across Cardi� dueto distinct physical di�erences between locations. Cardi� Harbour Authority (CHA)rain gauges located at Bute Park and Cardi� Docks have been recording since 1995and have highlighted the di�erences in the pattern of rainfall between the north andsouth of the study area. Available data indicate that rainfall events at the Docksgenerally occur at di�erent times and are of di�ering magnitude from those recordedat Bute Park (Ltd. 1996).In general rainfall at Bute Park is slightly higher than rainfall at Cardi� Docks.The quantitative analysis carried out by (Deane 2010) seems to suggest that there isan areal variation in rainfall patterns throughout south Cardi�. The average dailyrainfall values for both locations were calculated as 2.3mm for Bute Park and 1.7mmfor Cardi� Docks (Deane 2010). Corresponding rainfall totals for the same period (notspeci�ed by the author) were 501.8 mm and 368.3 mm, respectively (Deane 2010).Both gauges are located at similar elevations. However, the location of the Docksgauge is very exposed to weather conditions in the Severn Estuary. The prevailing



Chapter 8: Cardi� Bay Case Study 215strong winds at this location give rise to a lower recorded rainfall than over the restof Cardi�.8.3.2 Surface Water BodiesThe main two rivers �owing in the study area are the Rivers Ta� and Ely. Froman hydrological point of view the two rivers are signi�cantly di�erent.The River Ta� has a signi�cant upland catchment area, approximately 510 km2upstream of Cardi� Bay, and �ows through the steep urban areas of the Welsh valleys.As a result of this, the river produces very high peak �ows. Low �ow (exceeded 95%)of the time) at Pontypridd is 3.46 m3/s.The river Ely drains a substantially agricultural lowland catchment which is ap-proximately 163 km2 upstream of Cardi� Bay. Consequently it has much lower peaks.Low �ow (exceeded 95%) of the time) at St Fagans is 0.53 m3/s.According to HYDROTECHNICA (1991), there is evidence that there exists in-terchange of water between the River Ta� and the aquifer at speci�c locations in thestudy area. Boreholes water levels showed rapid response to change in level of theRiver Ta� in response to summer rainfall events. Conversely there is less evidenceof surface-water / groundwater interaction for the River Ely. In fact, this �ows onpredominantly low permeable materials in most of the study area.8.4 Conceptual Model and Model Construction8.4.1 Hydrostratigraphic UnitsThe conceptual model herein presented includes the main elements of a simpli�edhydrogeological system for the Cardi� area. The top surface of the Mercia Mudstone



Chapter 8: Cardi� Bay Case Study 216represents a suitable impermeable base for the system. In those areas where theMercia Mudstone is close to or at outcrop a minimum thickness to the overlyingaquifer is assigned.In the upland areas around the periphery of the site, the uppermost part of theMercia Mudstone presents clear evidence of weathering and water circulation. Bore-hole logs were used to de�ne its extent and thickness. This unit is likely to havehydraulic properties similar to those of the overlying gravel aquifer, hence they areconsidered as a unique unit.Conceptually the most important hydrostratigraphic unit is the gravel aquifer.This is con�ned by the Alluvium in the southern part of the site and uncon�ned inthe northern part. The widespread till deposits (mainly located in the region northof the railway line) and river terrace deposits are added to this unit as they possesssimilar hydraulic properties.Generally, the low water-bearing strata of the alluvium and made ground are notincluded in the model as most recent boreholes sampling surveys indicate that theseare often dry. Only where clear signs of weathering for the alluvium and where themade ground is in hydraulic contact with the gravel aquifer, are their thicknessesadded to the gravel aquifer.The alluvium and made ground units are hydrogeologically important if, for ex-ample, the model was constructed with the scope of investigating the interactionsbetween the upper (made ground) and lower (gravel) aquifers. This is currently out-side the scope of this work and the assumption of a single hydrostratigraphic unitseems to be justi�ed. Multi-layered and / or fully three-dimensional models, incor-porating all the hydrogeological units in the area are matter of future work.The thickness of the aquifer used in the model developed in this thesis is illustratedin Figure 8.5 alongside with the kriging interpolator error variance (Deutsch & Journel



Chapter 8: Cardi� Bay Case Study 2171998), Figure 8.6. The latter estimate is based on the location of the data (geologicalboreholes), the amount of data present in a speci�ed search radius and weightingfactors assigned to each data based on their reliability.
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Legend

Geological boreholes

Aquifer thickness

m

High : 15.4727

Low : 0.2Figure 8.5: Aquifer thickness in Cardi� Bay
8.4.2 Groundwater Levels and Flow DirectionsIn the Cardi� Bay area there is a large number of observation boreholes at whichgroundwater levels were recorded during the period preceding and following the con-struction of the barrage. In this model development only the observed groundwaterlevels recorded after the impoundment of the freshwater lake in the bay are consid-ered. These, in fact, are representative of the new hydraulic regime established in theregion.
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Legend

Geological boreholes

thk_var_Poin

Value

High : 1

Low : 0.046539Figure 8.6: Kriging error variance for the aquifer thickness in Cardi� BayFigure 8.7 illustrates average groundwater contours for the period from July 2003to September 2004 for the gravel aquifer. The Figure highlights some importantfeatures of the groundwater system in the area. The groundwater contours approx-imately follow the topography, which is also illustrated in Figure 8.7. The latter isclearly in�uenced by the characteristic pro�le of the top surface of the Mercia Mud-stone. Thus topography and / or top surface of bedrock play an important role onthe genaral groundwater �ow directions in the area.The primary groundwater �ow direction is north to south-east. The cli�s ofbedrock outcropping along the western boundary of the site and posessing a north-west to south-east orientation, play a fundamental role on the groundwater �ow dy-namics in Cardi�. The water �owing along this direction �nally discharges in Cardi�



Chapter 8: Cardi� Bay Case Study 219Bay.Similarly, the inter�uve existing between the Rivers Ta� and Ely is a consequenceof the bedrock's morphology. This divides the site into two areas and although itis clearly present it cannot be de�ned precisely due to the scarcity of observationboreholes in the region east of Cardi�. In this work the model area is extended as faras the River Rhymney and one of the objectives of the model output is to identify itslocation more accurately.Groundwater �ow diverge along the inter�uve, partly discharging westerly toCardi� Bay and partly discharging easterly to the coastline.
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alluvium

glacial till

gravel

made ground

DTM
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High : 41.1

Low : -3.4

GW contours mAOD (Gravel)Figure 8.7: Average observed groundwater levels for the gravel aquifer in Cardi� BayThe groundwater contours appear to have a very �at gradient in the region corre-sponding to central Cardi�, with depressions developing at more than one location.In some instances the groundwater levels are almost one metre below the level of



Chapter 8: Cardi� Bay Case Study 220the impounded freshwater lake. This is the consequence of the groundwater controlsystems which abstract water to lower groundwater levels in speci�c areas of centralCardi�.8.4.3 Material ParametersBased on the information collected and the study of groundwater levels, the sitewas divided into 35 zones. An initial hydraulic conductivity value was assigned ateach zone with a particular distinction between the northern (north of the Swansea-Newport railway line) and southern regions. In the northen part of the domain theaquifer includes till deposits which are less permeable than gravel deposits. In thoseareas an hydraulic conductivity of about 5 m/d was assigned.The areas to the east of the Docks present a thin layer of gravel deposit which isactually very often glacial till. Thus an hydraulic conductivity of 1 m/d was initiallyassigned in those areas.Elsewhere an hydraulic conductivity of 50 m/d, which is typical of gravel depositsin the area, was assigned.Figure 8.8, shows the 35 zones of hydraulic conductivity in the site. Note that,although only three values were initially assigned, each of the zones were allowed tochange in the parameter estimation process.8.4.4 Potential RechargeIn this section we report estimates of potential recharge to the groundwater sys-tem. These approximations were obtained from the water balance calculations re-ported by HYDROTECHNICA (1991). The analysis distinguishes between perme-able and impermeable areas.
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Hydraulic Conductivity: 5 m/d

Hydraulic Conductivity: 50 m/d

Hydraulic Conductivity: 1 m/d

Figure 8.8: Hydraulic conductivity zonation in Cardi� BayFor the permeable areas the e�ective rainfall (actualrainfall−actualevaporation)is calculated using a simpli�ed soil moisture model (see HYDROTECHNICA (1991)).The e�ective rainfall can produce runo� or potential recharge. Runo� will enter eitherthe natural drainage or the sewer system and potentially be removed from the system.The sewer system is very complex in an urban area and the mechanisms whereby thewater leaks through the brick walls of the sewers is not considered in this simpli�edwater balance. The potential recharge from rainfall entering the groundwater systemis estimated to be around 257 mm/yr.For impermeable areas it is assumed that no recharge from rainfall occurs and thatall rainfall results in evaporation or runo�. However, the leakage from the mains watersupply represent another important potential input to the groundwater system. In the



Chapter 8: Cardi� Bay Case Study 222city of Cardi� the mains services are located under roads and pavements. Thereforeit is assumed that mains water leakage is restricted to impermeable areas.It is estimated that the actual mains water supply entering the model area isapproximately 67, 415 m3/d (HYDROTECHNICA 1991). Of this amount, 25% isestimated to leak and become available as potential recharge to the groundwatersystem and 75% is actually supplied to consumers. Some of the potential rechargecould be redirected to the sewers and subsequently removed from the system. Giventhe obvious di�culties in quantifying the latter mechanism, this is not included inthis water balance calculation. The potential recharge from mains water entering thegroundwater system is estimated to be around 410 mm/yr.Finally, in Cardi� there are a number of open water body areas such as rivers anddocks. For these areas it is assumed that no recharge from rainfall occurs and thatall rainfall results in evaporation and runo�.Figure 8.9 shows the distribution of the recharge areas in the city of Cardi�. Notethat during the calibration process the permeable and impermeable areas are furtherdivided into sub-domains and the recharge values are obtained through the parameterestimation process.8.4.5 Surface-Water Groundwater interactionThe surface-water groundwater interaction has been simulated in a similar fashionto the River Package module in MODFLOW (McDonald & Harbaugh 1988, Harbaugh& McDonald 1996, Harbaugh et al. 2000). This approximation requires the speci�-cation of a river stage and a river bed elevation. The river stage data are obtainedfrom the Panorama DTM illustrated in Figure 8.7 and the river bed elevation waschosen to be 1 m below the river stage. Additionally a conductance term is required,
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Legend

Open Water Body Areas

Permeable Areas

Impermeable AreasFigure 8.9: Distribution of potential recharge in Cardi� Baywhich governs the amount of water which may be transferred from surface-water togroundwater or viceversa. The conductance term is a function of the river bed verticalconductivity, grid cell length, river width and river bed thickness.Low conductance terms (0.5 m2/d) were set for the Rivers Ely and Rhymney. Infact, as previously explained these rivers mostly �ow on the bedrock and alluvium,thus having a low river bed vertical conductivity. Conversely a higher conductanceterm (10 m2/d) was speci�ed for the River Ta�. This, in fact, �ows on gravel depositsfor most of its length.



Chapter 8: Cardi� Bay Case Study 2248.4.6 Boundary ConditionsFigure 8.10 shows the model triangulation and the nodes at which boundary con-ditions are speci�ed. Only triangular meshes were considered in this chapter, howeverthe extension to quadrilateral / rectangular meshes can be easily carried out.
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Figure 8.10: Cardi� Bay model - triangulation and location of boundary conditionsThe left-hand side boundary of the model correspond to the outcrop of the MerciaMudstone which parallels the River Ely. Along this boundary the gravel depositsterminates abruptly hence a homogeneous Neumann boundary (no-�ow boundary)condition is a very good approximation. The limited surface-groundwater interactionfor the River Ely is approximated as a source term (volumetric in�ow or out�ow) inthe adjacent elements to such boundary (see previous section).



Chapter 8: Cardi� Bay Case Study 225The right-hand side boundary corresponding to the River Rhymney has a similarbehaviour to the River Ely. This boundary could have been located at the ground-water divide located in the area between the River Ta� and Rhymney and visible inthe contour plot of groundwater levels (see Figure 8.7). However, given the scarcityof groundwater boreholes in the area east of Cardi� it was not possible to exactlylocate the position of such divide. Thus the River Rhymney was chosen as a saferoption for the eastern boundary. Note, however, that the approximate location ofthe groundwater divide can be obtained by the modelling results and the locationof the eastern boundary can always be modi�ed in the re�ning stages of the modeldevelopment.The southern boundary corresponds partly with the Cardi� Bay area and partlywith coastline between Cardi� and Newport. Since the freshwater lake was impoundedat a constant level of 4.5 mAOD, this represents a convenient value for imposingnon-homogeneous Dirichlet boundary (constant head boundary) conditions at thislocation. The coastline boundary approximately follows the mean high water leveland thus a value of 0 mAOD represent a good approximation along that boundary.The northern boundary of the model re�ects the bedrock outcrop at some loca-tions, such as in the Llanda� area, and cuts through the gravel aquifer elsewhere.In the model developed by Hydrotechnica Ltd. (HYDROTECHNICA 1991), a non-homogeneous Neumann boundary (speci�ed �ow boundary) condition was speci�edat few cells along the upstream parts of the River Ta�. We use the value of 200 m3/dused in the cited reports but we spread it over all the nodes identifying the northernboundary of the model. Additionally, we subdivide those nodes into di�erent groupsdepending on their location and estimate the in�ow input in the calibration process.



Chapter 8: Cardi� Bay Case Study 2268.5 Numerical Model - Deterministic caseOnly steady-state simulations are reported in this thesis. This allow us to beconsistent with the theoretical discourse reported in Chapters 2 and 4. For the de-terministic case the transient development is straightforward but for the stochasticformulation this might be more of a challenge and therefore further investigation isrequired.For the deterministic case two types of numerical techniques are implemented, theclassic �nite element method (FEM) and the mixed �nite element method (MFEM).The �rst uses linear basis functions for the approximation of the potential unknowns(hydraulic head) at the nodal points of the mesh (see Figure 8.10). The velocity solu-tion can be approximated by means of post-processing techniques involving Darcy'slaw. However for the reasons exposed in 2.1, the velocity approximations obtained inthis manner can be signi�cantly erroneous and unphysical.The latter method uses element piecewise constant basis functions for the approx-imation of the potential solution and vectorial basis functions for the approximationof the normal �uxes to element edges. Therefore with the MFEM we obtain the po-tential at each element of the mesh and normal �uxes at each edge of the mesh (seeFigure 8.10). The �uxes solution can be subsequently post-processed to obtain thevelocity components at the centroid of the elements. Note, however that the latterpost-processing does not involve any di�erentiation and therefore there is no loss ofaccuracy in the velocity solutions.For the Cardi� Bay case study the mesh is composed of 3, 283 nodal points,
6, 208 triangular elements and 9, 490 edges. The hydraulic conductivity, potentialrecharge and river parameters (conductance) are assigned element-wise in both meth-ods. Boundary conditions are assigned nodal-wise for the FEM and edge-wise for the



Chapter 8: Cardi� Bay Case Study 227MFEM.The discrete linear system obtained from FEM is symmetric and positive de�niteand can be solved using the conjugate gradient (CG) method. The conditioning ofthe coe�cient matrix can be improved using a preconditioner. Popular choices areapproximations of the coe�cient matrix by an incomplete Cholesky factorisation orone V-cycle of AMG code. In our simulations we use the second choice.Conversely the discrete linear system obtained by MFEM is inde�nite and there-fore CG is not recommended as solver for this type of problems. Other Krylov sub-space iterative solvers are suited for inde�nite linear systems. In this thesis we useMINRES equipped with the Schur complement preconditoner described in �2.5.3.All simulations are run until the solvers have converged. The solvers tolerance isset to 10−9.8.5.1 Calibration and Model ResultsThe calibration process is sought as the �rst step of the model validation process.Validation is the process whereby the numerical model is assessed to be representativeof the real situation in an acceptable manner. Obviously this is a mandatory measureif the model was to be used for predictive purposes. The second step in the validationprocess is the sensitivity analysis. This is dealt with in the next sections.For the calibration process we interfaced the model with a publicly available pa-rameter estimation software, PEST (Doherty 1994). The parameters selected for theestimation process included the hydraulic conductivity zonation (see Figure 8.8) andthe speci�ed �ow condition at the northern boundary of the model. These parameterswere estimated so that a reasonable match was obtained between observed (overall
47 measurements, see Figure 8.7) and modelled groundwater levels. The �t was con-



Chapter 8: Cardi� Bay Case Study 228sidered acceptable if the residual between observed and modelled data was less thanone metre.The distribution of modelled groundwater elevations in the Cardi� area is illus-trated in Figure 8.11.
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© Crown Copyright Ordnance Survey. An EDINA Digimap / JISC supplied service.Figure 8.11: Hydraulic head solution (mAOD) for the Cardi� Bay modelThe FEM approximation for the potential reproduces very well the �at hydraulicgradients in the central region of the study area. Also the steep gradients in thenorthern region are qualitatively comparable to those obtained by measurements (seeFigure 8.11). The general north to south groundwater �ow directions with dischargeareas clearly identi�ed in Cardi� Bay and the coastline, is well replicated.The model also reproduces the groundwater divide existing between the RiversTa� and Rhymney. This seems to be located just east of East Moors, passing through
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Figure 8.12: Comparison between observed and modelled groundwater levels (mAOD)for the Cardi� Bay modelthe suburb areas of Splott and Roath. A model re�nement would allow us to de�nethis divide (no-�ow boundary) as the eastern boundary of the model.The calibration plot showing the comparison between modelled and observed datais illustrated in Figure 8.12. Note that if a perfect match existed, the points on the�gure would all lie on a 45 degree angle straight line. An indication of the model`goodness of �t' is given by the sum of squared weighted residuals (SSR), this isequivalent to 6.91 m2 for the calibrated model. The SSR for the uncalibrated modelwas 214.85 m2. The largest positive residual is 0.9391 m, corresponding to borehole'CS337' and the largest negative residual is −1.0245 m, corresponding to borehole'CS284'. Both boreholes are located in the proximity of the steep gradients in thenorthern region of the model. This might indicate that the actual con�guration ofthe conductivity �eld does not allow one to fully reproduce the variability observedin that area.Overall the calibration is very satisfactory, in fact the majority of head residuals



Chapter 8: Cardi� Bay Case Study 230(37 out of 47) are within the range −0.5 ≤ res ≥ 0.5, where res indicates the residualvalue (hmod − hobs) in metres. Only one residual, `CS284', is outside the acceptablerange.In addition to the hydraulic head approximation, the MFEM approximates thenormal �uxes at each edge of mesh. The �uxes can be post-processed to obtain thevelocity components at the centroid of each �nite element. The MFEM solution forthe potential is very similar to the one obtained by FEM, the only di�erence beingthat in the latter case the head values are obtained at the nodal points of the meshwhile in the former case they are piecewise constant on the �nite elements.The x and y components of the velocity �eld are pictured in Figures 8.13 and 8.14,respectively. The heterogeneity of the transmissivity �eld creates a velocity which mayappear di�cult to interpret at �rst sight. However some clear features emerge fromthe numerical results. First of all, the large absolute value of the velocity componentsagrees with those typical of sand and gravel deposits, which are signi�cant in thickness(exceeding 10 m) and predominantly present in the west region of Cardi�. Secondlygroundwater directions largely agree with what is expected from our understandingof the hydrogeologycal system (conceptual model). Positive x-component velocities(see Figure 8.13) and negative y-component velocities (see Figure 8.14), indicate awesterly and southerly groundwater direction, respectively. This is what is expectedin the Riverside and Grangetown areas where the discharge into the freshwater lakeof Cadi� Bay is the dominant groundwater mechanism. As already mentioned thelarge magnitudes of the velocities at these locations are justi�ed by the signi�cantthickness of the aquifer and the large permeability of the gravel.The northern region (north of the railway line) is characterised by low hydraulicconductivity (the aquifer is often constituted by till deposits) and generally smallerthicknesses. Thus the velocities are small in magnitude and possess a predominant
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Figure 8.13: x-component velocity solution (m/d) in Cardi� Baynorth to south direction.Thirdly, the groundwater divide, mentioned several times in the conceptual modelsection is clearly identi�ed by the numerical approximation of groundwater velocities.Its north to south direction coincides with a zero value for the x-component of thevelocity �eld. Figure 8.13 clearly shows the groundwater divide existing between theRivers Ta� and Rhymney. A model re�nement would allow us to de�ne this featureas the eastern boundary of the model.Although the models seem to provide physically meaningful solutions for both thehydraulic head and the velocity �eld, there are some areas in which the numerical ap-proximation should be treated with care. In particular, the strong hydraulic gradientand large easterly directed velocities in the area of Queen Alexandra Dock are caused
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Legend
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Figure 8.14: y-component velocity solution (m/d) in Cardi� Bayby the large head jump between the Cardi� Bay and coastline boundaries. This areashould be reconsidered at the conceptual level and ways to make this transition lessabrupt should be implemented.In general terms the region to the east of the groundwater divide requires moreinvestigation and additional hydrological-hydrogeological information. Most of the�eld investigations were in fact carried out in the region west of the groundwaterdivide. Thus only the model results associated with the latter area should be consid-ered reliable. Future model development would rede�ne the eastern boundary of themodel to correspond with the location of the groundwater divide.



Chapter 8: Cardi� Bay Case Study 2338.6 Numerical Model - Stochastic caseThe stochastic implementation follows the theory discussed in Chapter 4. Howeverfor the reasons discussed in Chapter 7, the conductivity �eld (and / or transmissivity)is considered to be lognormally distributed.The numerical methods used for the uncertainty quanti�cation of model predic-tions belongs to the large family of stochastic Galerkin methods. The Galerkin meth-ods used for the discretisation of the deterministic part are the FEM (with piecewisebasis functions on triangular elements) and MFEM (with triangular Raviart-Thomaselements of lowest order). The stochastic part (both, solutions and conductivity coef-�cient are stochastic processes) is discretised by means of complete multidimensionalHermite polynomials, commonly referred to as polynomial chaos.A comparison with numerical solutions obtained with Monte Carlo methods forthe case study herein discussed is not reported for such a comparison is beyond thescope of this chapter. A comparison, which also served as code validation, betweenSG and MCM for a number of test problems is presented in Chapters 5 and 7.For the Cardi� Bay groundwater models presented in �8.5, there are several sourcesof uncertainty. These are associated with: the conductivity distribution, the thicknessof the aquifer, the boundary conditions, the potential recharge to the groundwatersystem and the rivers parameters (river stage, bottom and conductance). The lasttwo features are incorporated into the mathematical problem as the right-hand sideof the PDE to be solved, and they can be thought as a source and /or sink term. Thestochastic representation of the source term is not considered in this thesis because,as explained in the introduction, the mathematical challenges are concerned with thestochastic representation of the di�usion or conductivity coe�cient.For this case study the di�usion coe�cient corresponds to the transmissivity co-



Chapter 8: Cardi� Bay Case Study 234e�cient, which is the product of the conductivity �eld and thickness of the aquifer.In a stochastic framework the model input parameters are characterised by the �rst(mean value) and second (standard deviation) moments. The parameters mean valuesare directly obtained from the deterministic implementations (see zonation in Figure8.8), whilst the standard deviation is generally estimated from measurements.The standard deviation is often interpreted as an indicator of the level of un-certainty associated with a speci�c parameter. The error associated with the kriginggeostatistical interpolator (Deutsch & Journel 1998) associated with the aquifer thick-ness, illustrated in Figure 8.6, can be successfully used for this purpose. In fact theerror (uncertainty) is higher at locations with no measurements and lower at themeasurement locations. In the case of Cardi� Bay, there are overall 573 borehole logsat which the aquifer thickness was estimated. These are well-scattered in the studyarea, thus giving a good representation of the uncertainty associated with the aquiferthickness. Additionally, measurements of thicknesses are less prone to error thanother physical parameters such as hydraulic conductivity. This is particularly true inthe case of Cardi� Bay where the contact between the top surface of the mudstoneand the overlying deposits is well identi�ed.The uncertainty associated with the conductivity �eld is more di�cult to quantify.Ideally the standard deviation obtained from samples of conductivity measurementsfor each of the lithologies present in the study area could be used for this purpose.However, conductivity and / or transmissivity data are normally scarce and often erro-neous as they are subject to personal interpretation. Furthermore, the measurementsare representative at the very local scale and any extrapolation to larger domainsis often a conjecture. For the case of Cardi� Bay there are some measurements ofhydraulic conductivity, however these are limited and clustered at speci�c locations.Consequently a representation of the uncertainty associated with the conductivity



Chapter 8: Cardi� Bay Case Study 235coe�cient based only on measurements is unfeasible and di�cult to obtain.Furthermore, as illustrated in Figure 8.8, the study area has been divided intozones each of which has di�erent hydraulic properties. Therefore we require estimatesof the statistics for each of the zones considered in the parameter estimation process.This information is problem dependent and cannot be extrapolated from other studiesreported in the public literature.8.6.1 Colored Noise ApproachThe �rst set of simulations consider the hydraulic conductivity as a stochasticprocess which is spatially correlated whilst the aquifer thickness is a deterministicfunction depending only on the spatial location.The hydraulic conductivity is approximated by a discontinuous lognormal spatialrandom �eld. A lognormal random �eld is obtained by an exponential transformationof a Gaussian random �eld (de�ned by a Karhunen-Loéve expansion), as explainedin �7.2. For a lognormal random �eld to be used in the context of SG methods,this is subsequently expanded into the polynomial chaos (Ghanem 1999a,b, Sudret &Der Kiureghian 2000, Ghanem & Spanos 2003, Ullmann 2008).In the case of Cardi� Bay the sub-domains used in the calibration process are usedto de�ne the conductivity random �eld. These sub-domains are of irregular shapeas illustrated in Figure 8.8. Providing that the exponential correlation function is asuitable spatial model for the �eld's spatial variability, the closed form solutions tothe eigenvalue problem (4.4) can still be applied to general geometries. It is, in fact,possible to enclose each sub-domain Dk, k = 1, . . . , Nr (where Nr is the number ofsub-domains), in a square / rectangular shape domain D′

k and solve the eigenvalueproblem on the latter. Thus a Karhunen-Loéve expansion is implemented for each of



Chapter 8: Cardi� Bay Case Study 236the sub-domains using the calibrated conductivity coe�cients as mean values. Thestandard deviation is obtained by �xing the coe�cient of variation to be δ = 0.1.Given that the KLE point-wise error variance is large at the boundaries of thediscretisation domain (Sudret & Der Kiureghian 2000), when compared to other seriesexpansion methods, D′

k is taken larger than the size of the actual region. Thus, if
xmax, ymax and xmin, ymin are the maximum and minimum spatial coordinates of Dk,respectively, then D′

k is of size [xmin − ax, xmax + ax] × [ymin − ay, ymax + ay], where
ax = xmax−xmin

4
and ay = ymax−ymin

4
.The correlation lengths are set to the speci�c size of each sub-domain and the samenumber of KLE terms (d = 4, i.e four random variables) are retained. As previouslyexplained, each transformed KLE is expanded into polynomial chaos. Therefore wehave two polynomial chaos expansions, one used for the conductivity coe�cient andone for the solution space. Complete polynomials are used in both cases. However,a maximum degree pL = 8 is used for the coe�cient and pu = 4 for the solution (see�7.2).The mean hydraulic head and velocity components are identical to those illustratedin Figures 8.11, 8.13 and 8.14. The standard deviation associated with the meanhydraulic head solution is illustrated in Figure 8.15. Given that the coe�cient ofvariation is constant, the �gure highlights the regions of the model in which thenumerical solution is the most sensitive to changes in parameter values. This modeloutput can be compared to the result obtained by implementing a traditional (MonteCarlo based) sensitivity analysis of the conductivity coe�cients.Note that the areas with larger standard deviation correspond to the areas wherethere is a strong hydraulic gradient (see Figure 8.11). These are the areas in whichsmall changes in the conductivity coe�cients determine large changes in the numericalsolution. Hence these are the areas where the hydraulic head solution is the most
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Legend

std of potential (m)

0 - 0.003
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0.020 - 0.027
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0.042 - 0.057

0.057 - 0.101Figure 8.15: Standard deviation of hydraulic head in Cardi� Bay - (randomly) cor-related conductivity coe�cientuncertain.The standard deviation associated with the mean velocity components is illus-trated in Figures 8.16 and 8.17. The interpretation of the standard deviation associ-ated with the velocity solution is somewhat less straightforward. However it is evidentthat the larger uncertainty in model output approximately corresponds to the areaswhere the velocity components are large in magnitude (see Figures 8.13 and 8.14).These are the areas with large aquifer thickness and /or hydraulic conductivity.8.6.2 White Noise ApproachThe white noise approach considers no spatial correlation of the underlying ran-dom �eld. This approach is not normally used to approximate the conductivity
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Legend

std x-comp velocity (m/d)

0 - 0.005
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0.023 - 0.035

0.034 - 0.048

0.048 - 0.062

0.062 - 0.076

0.076 - 0.091

0.091 - 0.100Figure 8.16: Standard deviation of x-component of velocity �eld in Cardi� Bay -(randomly) correlated conductivity coe�cientcoe�cient which is generally spatial dependent.For the Cardi� Bay case study the aquifer thickness can be approximated aswhite noise. In fact the large amount of geological information available allowed usto approximate its spatial variability accurately.In this section, both the aquifer thickness and the hydraulic conductivity areapproximated as white noise. This allow us to quantify the separate contributions ofthese two parameters to the model output uncertainty.The white noise approach is implemented setting d = 1, thus only the �rst momentin the KLE is used in the approximation of the spatial random �eld. A lognormalrandom variable is de�ned for the conductivity coe�cient and aquifer thickness foreach element in the discretised domain (6208 �nite elements). The mean values are as
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Legend

std y-comp velocity (m/d)

0 - 0.004

0.004 - 0.009

0.009 - 0.018

0.018 - 0.029

0.029 - 0.043

0.043 - 0.057

0.057 - 0.071

0.071 - 0.089

0.089 - 0.100Figure 8.17: Standard deviation of y-component of velocity �eld in Cardi� Bay -(randomly) correlated conductivity coe�cientillustrated in Figure 8.5 for the aquifer thickness and as obtained from the calibrationprocess for the conductivity coe�cient. The standard deviation for the aquifer thick-ness is obtained from the kriging interpolation error as illustrated in Figure 8.6. Thekriging error was corrected so that the maximum coe�cient of variation is equal toone. The standard deviation for the conductivity coe�cient was obtained by assigninga constant coe�cient of variation, δ = 1.0.The standard deviation associated with the mean hydraulic head solution is illus-trated in Figures 8.18 and 8.19. The �rst �gure shows the hydraulic head standarddeviation when the aquifer thickness is a stochastic process and the conductivitycoe�cient is a deterministic function of space. The second �gure shows the oppo-site situation, i.e. the hydraulic conductivity is a stochastic process and the aquifer



Chapter 8: Cardi� Bay Case Study 240thickness is a deterministic function of space.As expected most of the model output uncertainty is due to the uncertainty in theconductivity coe�cient. This re�ects the fact that the hydraulic conductivity rangesover several order of magnitudes whilst the aquifer thickness is relatively constant.The aquifer thickness uncertainty contribution is limited to small areas in the northernregion of the model. This of course is also a re�ection of the fact that given the largeavailability of structural information it was possible to accurately de�ne the aquiferthickness in the study area.The standard deviation for the velocity components when the aquifer thickness is astochastic process and the conductivity coe�cient is a deterministic process are givenin Figures 8.20 and 8.21. The standard deviation for the opposite settings are givenin Figures 8.22 and 8.23. Similarly to the hydraulic head, most of the uncertainty inthe solution is associated with the conductivity coe�cient and only a small amount isdue to the aquifer thickness (note that for the �gures showing the standard deviationfor the aquifer thickness, the plotting scale had to be changed).8.7 ConclusionsIn this chapter we have shown that Stochastic Galerkin methods can be e�ectivelyused to quantify parameter uncertainty for real-life problems. We used both �niteelement and mixed �nite element techniques to discretise the deterministic part of thevariational problem, and multidimensional Hermite polynomials for the discretisationof the probability space.In the current work, we have only taken into account the uncertainty associatedwith the hydraulic conductivity. However, the stochastic representation of the sourceterm and / or boundary conditions should also be considered. If the various sources
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Legend

std potential (m)

Random Aquifer Thickness

0 - 0.0007

0.0007 - 0.001

0.001 - 0.002

0.002 - 0.003

0.003 - 0.007

0.007 - 0.01

0.01 - 0.04

0.04 - 0.09

0.09 - 0.22Figure 8.18: Standard deviation of hydraulic head in Cardi� Bay - random aquiferthicknessof model uncertainty are described by the same probability distribution, the inclu-sion of those terms in the stochastic formulation is straightforward. If, however,these are described by di�erent probability distributions, the implementation mightbe problematic or potentially impossible. To the author's best knowledge studiesthat consider uncertainty due to probabilistically di�erent parameters have not beenreported in the literature. This aspect which might be mathematically di�cult toimplement and could limit the implementation of the SG methodology, can neverthe-less be important from the point of view of applications. In fact, as it has alreadybeen discussed, it is generally accepted that parameters, such as hydraulic conductiv-ity, are better approximated by lognormal spatial random �elds, but forcing terms,representing for example groundwater recharge, are generally better approximated byuniform spatial or non-spatial random �elds. It might be possible that in order to bescienti�cally grounded these assumptions cannot be relaxed. Thus, in those cases the
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Legend

std potential (m)

Random Conductivity

0 - 0.037

0.037 - 0.075

0.075 - 0.11

0.11 - 0.15

0.15 - 0.18

0.18 - 0.22

0.22 - 0.26

0.26 - 0.3

0.3 - 0.33Figure 8.19: Standard deviation of hydraulic head in Cardi� Bay - random conduc-tivity coe�cientuse of SG methods should be reconsidered.The work reported in this chapter has unfolded with a speci�c logic. A deter-ministic groundwater model, a simple one in this case, was �rst developed supportedby a thorough conceptual understanding of the study area. The crucial part of this�rst stage was the calibration process whereby model parameters were adjusted sothat numerically computed approximations compared well with observed data. Inthis work we used the aid of a popular and widely recognised parameter estimationsoftware, PEST (Doherty 1994). This �rst stage produced a model which integratednot only actual data (collated from �eld investigation) but which also included expe-rienced knowledge (the subjective understanding that the modeller has developed ofthe site). In actual fact this model represents the most likely approximation of thesite given the available information and understanding. The calibrated parametersare subsequently described in a probabilistic manner using lognormal distributions.
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0.06 - 0.15Figure 8.20: Standard deviation of x-component of velocity �eld in Cardi� Bay -random aquifer thicknessThus the values of the calibrated data set is used to de�ne the mean, and the stan-dard deviation (measure of parameter uncertainty) was given a value determined byadopting a constant coe�cient of variation. Although this approach is simplistic itis perfectly reasonable for the scope of this exercise which is primarily methodolog-ical. Recently Tonkin & Doherty (2009), Doherty (2010), Herckenrath et al. (2011)proposed a way to use post-calibration information to probabilistically parametrisemodel input coe�cients (conductivity, transmissivity or storativity). In fact, as aresult of the calibration process, sensitivities of model results with respect to parame-ters are computed. Such sensitivities provide an indication of parameters' uncertaintyand could be used to statistically characterise the input data used in the stochasticformulation.Although approaches to (statistically) characterize model parameters are still be-ing investigated by the scienti�c community and a general consensus is lacking, the
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0.06 - 0.15Figure 8.21: Standard deviation of y-component of velocity �eld in Cardi� Bay -random aquifer thicknessauthor believes that the community should agree that post-calibration is the requiredstarting point for any uncertainty quanti�cation. This is particularly important inthe groundwater modelling context where calibrated models hold expert knowledgewhich is of invaluable importance in not only having a model capable of replicatingreal-life observations but also of con�dently predicting future system behaviour.
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Chapter 9
Conclusions

The work presented in this thesis addresses research questions which are of partic-ular interest to the groundwater modelling community. We �rst analysed mixed �niteelement methods which are locally conservative and provide an accurate solution forthe velocity �eld, which is often the variable of primary interest in many groundwatermodelling applications. Second, we considered methods for uncertainty quanti�ca-tion - a �eld which in recent years has emerged as an area of great interest both foracademic and industrial communities, as well as for policy-makers. We speci�callyfocused on Stochastic Galerkin methods which have emerged as a valuable alternativeto popular Monte Carlo methods. Finally, we applied all the numerical techniquesinvestigated in this thesis to a real-case study in the United Kingdom.In this concluding chapter we summarise the �ndings of the study in relation tothe underlying research questions and indicate directions for possible future researchin relation to each of these.
246



Chapter 9: Conclusions 247Accuracy of MFEM and Computational Comparison with the HybridMethodAccuracy of numerically calculated groundwater �uxes and / or velocities hasbeen at the centre of debates for several years. The groundwater modelling com-munity agrees that for some speci�c applications, such as nuclear waste disposal, theapproximations obtained by conventional numerical methods are not accurate enough.Methods that overcome this important limitation are available and the mixed �niteelement method is one of those.Our experiments using mixed �nite element methods show that discrete error con-vergence is in line with theoretical results and those reported by other researchers.First order convergence was recorded for the velocity solution on structured and un-structured triangular meshes. This is unaltered for problems with discontinuous,diagonally anisotropic and full-tensor anisotropic coe�cients. Second order conver-gence for the velocity solution is recorded on structured rectangular meshes and aloss of one order convergence is recorded for discontinuous coe�cients. As observedin several published articles, the accuracy of the velocity solution deteriorates signi�-cantly on unstructured rectangular meshes. The investigation of the approaches thatovercome this limitation was outside the scope of this work, but the reader is referredto Younes et al. (2010) for an overview on the matter.The review of the literature on mixed �nite element methods reveals that oftenthe hybridization approach is considered when comparison studies on computationalperformance are published. The original mixed �nite element method is generallydiscarded on the basis that the discrete linear system of equations is inde�nite andlarger than the one obtained with the hybrid approach. However, iterative solvers forinde�nite systems are available and generally the success of a solver crucially depends



Chapter 9: Conclusions 248on the choice of the preconditioner rather than on the system size. Thus the originalmixed �nite element method cannot be discarded based only on those considerations.The results of our experiments show that there is not a unique answer to theproposed research question: is solving the inde�nite system computationally more ex-pensive than solving the positive de�nite system obtained with the hybrid approach?In fact, the performance largely depends on the characteristics of the conductivitycoe�cient. Thus for problems with isotropic and / or heterogeneous coe�cients, onstructured or unstructured triangular meshes, solving the inde�nite system is thecheapest method. This is also true for anisotropic diagonal coe�cients, but only onrectangular meshes. For more general coe�cients, i.e. full anisotropic tensors, theexperimental results are more complex to summarise. It appears that the AMG im-plementations generally perform better than all other considered solvers. However,none of these solvers stands out as signi�cantly more e�ective than others.Real-life Application of Stochastic Galerkin MethodsIn recent years new methodologies have been developed with the aim of improvingthe performance of slow converging Monte Carlo methods. In this work we havefocused on Stochastic Galerkin methods. We have exposed the limitations of thistechnology and shown that with suitable assumptions the method can be e�ectivelyapplied to the groundwater modelling context. To the best of our knowledge theCardi� Bay case study represents one of the �rst formal attempts to fully quantifyuncertainty in a two-dimensional areal groundwater model.The approach to uncertainty quanti�cation used in this thesis has evolved throughthe following steps. First, a deterministic groundwater model for the area was ob-tained and this was calibrated against observed groundwater levels using parameterestimation techniques. Second, the calibrated conductivity coe�cient was mathemat-



Chapter 9: Conclusions 249ically described by a discontinuous spatial random �eld. The mean conductivity foreach sub-regions in the physical domain was assigned the value obtained during thecalibration process and the standard deviation was obtained by specifying a constantcoe�cient of variation. Third, the stochastic problem was formulated using stochasticGalerkin methods and solved.We argue that this procedure represents a good starting point for further en-hancement of uncertainty quanti�cation in groundwater modelling applications. Inour analysis only one set of conductivity values that yielded an acceptable calibrationwas considered for each sub-region. However, a range of parameter sets for whichthe calibration is deemed to be acceptable could be identi�ed, and a stochastic for-mulation could be implemented on each of those parameter sets. Furthermore, inour analysis, and as it is often done in industrial applications, the geometry of thesub-regions was determined based on informed subjective judgement. However, theremight be several possible geometrical arrangements that would provide equally suit-able calibration results. A stochastic formulation could thus be implemented on allof those arrangements. Considering a range of conductivity values and a range ofsub-region geometries could thus yield a more robust quanti�cation of parameter un-certainty. Note that this is not the same as implementing a Monte Carlo analysisbecause the set of considered parameters or geometries are only those for which themodel is considered (deterministically) calibrated. The current work thus highlightedthis kind of extension of the method as one possible future research direction.It should also be noted that the model currently used for the Cardi� Bay areais based on a simple conceptual model. For the purpose of the current study thiswas considered acceptable and it represents a solid starting point from which to buildcomplexity and develop further. The extension of the model to three dimensions and/ or multilayered systems can be done. However, additional challenges in terms of



Chapter 9: Conclusions 250computational cost and memory requirements are likely to be encountered. This thenrepresents a further future research direction that arises from this work.A New E�cient Preconditioner for SFEM SystemsThe success of using Stochastic Galerkin methods relies on e�cient implementa-tion and fast iterative solvers. The performance assessment of popular mean-basedpreconditioners revealed that these are, in general, not robust with respect to the con-ductivity coe�cient. Their performance is considered acceptable for the stochasticallylinear case but serious limitations were encountered for the stochastically non-linearcase.It was evident from the literature and from our analysis that mean-based precon-ditioners cannot be robust with respect to the conductivity coe�cient because theyonly include, in the preconditioned system, information associated with the meanvalue of the spatial random �eld. The mean information is included in the blocks ofthe leading diagonal of the global stochastic system, whilst oscillations (representingthe variability of the spatial random �eld) about the mean are contained in the o�-diagonal blocks. When the latter contributions become important the mean-basedpreconditioner performs poorly simply because this information is not included inthe preconditioned system. For the stochastically non-linear case this situation isexacerbated by the fact that every block of the global system has non-zero entries.To overcome this important limitation we proposed an alternative preconditionerfor SFEM whereby the o�-diagonal blocks of the global system are included in thepreconditioned system using a block symmetric Gauss-Seidel algorithm. The analysisof the preconditioner performance revealed that for the stochastically linear and non-linear cases a limited number of iterations for the Gauss-Seidel scheme are requiredwhen this is used in conjunction with the conjugate gradient method. In fact, in many



Chapter 9: Conclusions 251cases the best CG performance is achieved when only one Symmetric Gauss-Seideliteration (a forward and backward sweep) is implemented.The presented computational analysis clearly showed that block Gauss-Seidel al-gorithms used either as a preconditioner for CG or as stand-alone solvers are moree�cient than mean based preconditioners for both the stochastically linear and non-linear cases. For the latter case, the CPU savings are remarkable. We showed thatfor some of the test cases considered, the stand-alone standard Gauss-Seidel solver isthe best performing solver. However, its performance seems to deteriorate at a fasterrate for cases with large standard deviation than preconditioned CG. Therefore, weconclude that generally CG equipped with a block symmetric Gauss-Seidel precondi-tioner should be used to solve SFEM systems for both the stochastically linear andnon-linear cases.Finally, it should be pointed out that for the non-linear case, the Gauss-Seidelpreconditioner performance is poor if one V-cycle of AMG code is used to invertthe sub-systems. Our experiments reveal that the AMG based preconditioner issigni�cantly less e�cient than the UMFPACK based preconditioner. This is not onlydue to the considerable set-up time required for the AMG case but it also appears thatAMG is less e�cient on a per-iteration basis. This �nding is di�erent to the resultsreported for the linear case experiments where AMG always outperforms UMFPACKon a per-iteration basis.Considerations on Solvers for Systems Obtained by SMFEMThe presented experiments show that MINRES CPU cost required to solve thestochastic formulation of the mixed �nite element method is, in general, very largewhen a Schur complement preconditioner based on mean information is used. For thestochastically linear case the CPU cost is acceptable. However, it is prohibitively too



Chapter 9: Conclusions 252large for the non-linear case.The review of the literature available on this topic revealed that this is a verynew research area and very few studies have been carried out on e�cient solvers forthe inde�nite systems obtained with SMFEM. As for the deterministic case the hy-bridization approach is also possible for the stochastic case. However, the advantagesexisting in the deterministic implementation (the velocity matrix being diagonal) arelost in the stochastic counterpart.The e�cient solution of SMFEM is still an open problem. Some promising resultshave recently been published by Powell & Ullmann (2010). However, their analysisis very complex and the preconditioners used are not easy and / or practical toimplement. I believe, that the decoupling of the velocity vector from the pressurevector, originally proposed by Chavent et al. (1984), Chavent & Ja�ré (1986) andmore recently by Scheichl (2001) could hold the key to the e�cient implementation ofthe stochastic version of mixed �nite element methods, opening up an exciting newarea of research.Outcomes of the research projectThe outcomes of this research will be developed into three articles to be publishedin international peer-reviewed journals.The �rst paper, to be submitted to Computers and Fluids, will present a compu-tational comparison between traditional MFEM and MHFEM. Essentially the paperwill seek to answer the research question posed at the beginning of this work: underwhich circumstances is solving the inde�nite system obtained from MFEM compu-tationally more expensive than solving the positive de�nite system obtained withthe hybrid approach? The paper is a summary of the numerical work presented inChapter 3 and builds upon the theory presented in Chapter 2.



Chapter 9: Conclusions 253The second paper, aimed for publication in International Journal for NumericalMethods in Fluids, will compare the computational performance of mean-based andGauss-Seidel preconditioners for the solution of the stochastic formulation of thegroundwater �ow equations (second order problem, only). The paper will presentresults reported in Chapters 6 and 7. It will also include the theory discussed inChapter 4.The third paper, aimed for publication in Water Resources Research, will presentnumerical results for the Cardi� Bay case study. In addition to presenting a concretegroundwater modelling application, the paper aims to establish a framework for quan-ti�cation of model uncertainty in groundwater models. The logical approach whichdevelops from a deterministic, calibrated numerical model to a stochastic model willbe emphasized. In order to capture the attention of the wider groundwater researchcommunity the paper will include examples of multi-layered groundwater and con-�ned / uncon�ned systems which are further developed from the work presented inChapter 8.In addition to the aforementioned papers, the author plans to write a paper on e�-cient solvers for the stochastic formulation of the mixed method (�rst order problem).Di�erently from the other three, this paper requires substantial additional work, partof which involves understanding whether the decoupling of the velocity vector fromthe pressure vector, proposed by various researchers in deterministic settings, is alsofeasible in the context of stochastic Galerkin methods.
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Appendix A
Set-up Time for Test Problems andPreconditioner Pbdiag
A.1 Set-up time for test problems and Pbdiag precon-ditioner - Linear caseTable A.1: Problem and Pbdiag set-up times (sec.) - Test Problem 1

h p = 2 p = 3 p = 4
d = 4cholinc 1

32
1.21 + 0.01 0.15 + 0.01 0.15 + 0.01

1
64

0.23 + 0.06 0.23 + 0.06 0.23 + 0.06
1

128
0.66 + 0.41 0.66 + 0.44 0.66 + 0.44AMG 1

32
0.88 + 0.31 0.15 + 0.27 0.15 + 0.27

1
64

0.23 + 1.08 0.22 + 1.06 0.22 + 1.08
1

128
0.66 + 7.31 0.66 + 7.61 0.66 + 7.31

d = 6cholinc 1
32

0.16 + 0.01 0.16 + 0.01 0.17 + 0.01
1
64

0.26 + 0.06 0.26 + 0.06 0.26 + 0.06
1

128
0.83 + 0.43 0.85 + 0.44 0.87 + 0.44AMG 1

32
0.17 + 0.27 0.16 + 0.27 0.16 + 0.27

1
64

0.26 + 1.06 0.26 + 1.08 0.27 + 1.05
1

128
0.86 + 7.59 0.85 + 7.43 0.86 + 7.34

264



Appendix A: Set-up Time for Test Problems and Preconditioner Pbdiag 265Table A.2: Problem and Pbdiag set-up times (sec.) - Test Problem 2
σ p = 2 p = 3 p = 4

d = 4cholinc 0.3 1.42 + 0.01 0.14 + 0.01 0.15 + 0.01
0.5 0.15 + 0.01 0.15 + 0.01 0.15 + 0.01
0.7 0.14 + 0.01 0.14 + 0.01 0.15 + 0.01AMG 0.3 0.58 + 0.34 0.14 + 0.28 0.15 + 0.28
0.5 0.15 + 0.28 0.14 + 0.28 0.15 + 0.28
0.7 0.14 + 0.28 0.15 + 0.28 0.15 + 0.28

d = 6cholinc 0.3 0.16 + 0.01 0.16 + 0.01 0.17 + 0.01
0.5 0.15 + 0.01 0.15 + 0.01 0.17 + 0.01
0.7 0.15 + 0.01 0.15 + 0.01 0.17 + 0.01AMG 0.3 0.15 + 0.28 0.15 + 0.28 0.17 + 0.28
0.5 0.15 + 0.28 0.15 + 0.28 0.17 + 0.28
0.7 0.15 + 0.28 0.16 + 0.28 0.17 + 0.28Table A.3: Problem and Pbdiag set-up times (sec.) - Test Problem 3
δ = σ

µ
p = 2 p = 3 p = 4

d = 4cholinc 0.3 0.17 + 0.01 0.14 + 0.01 0.15 + 0.01
0.5 0.14 + 0.01 0.14 + 0.01 0.14 + 0.01
0.7 0.15 + 0.01 0.14 + 0.01 0.15 + 0.01

0.7,0.5,0.6,0.7 0.15 + 0.01 0.14 + 0.01 0.14 + 0.01AMG 0.3 0.17 + 0.32 0.14 + 0.32 0.14 + 0.32
0.5 0.15 + 0.32 0.14 + 0.32 0.14 + 0.32
0.7 0.14 + 0.32 0.14 + 0.32 0.14 + 0.32

0.7,0.5,0.6,0.7 0.14 + 0.32 0.14 + 0.32 0.14 + 0.32
d = 6cholinc 0.5 0.16 + 0.01 0.16 + 0.01 0.17 + 0.01

0.7 0.16 + 0.01 0.16 + 0.01 0.17 + 0.01
1.0 0.16 + 0.01 0.16 + 0.01 0.17 + 0.01

0.7,0.5,0.6,0.7 0.16 + 0.01 0.16 + 0.01 0.17 + 0.01AMG 0.3 0.16 + 0.32 0.16 + 0.32 0.2 + 0.32
0.5 0.16 + 0.32 0.16 + 0.32 0.17 + 0.32
0.7 0.16 + 0.32 0.16 + 0.32 0.17 + 0.32

0.7,0.5,0.6,0.7 0.16 + 0.32 0.16 + 0.32 0.17 + 0.32



Appendix A: Set-up Time for Test Problems and Preconditioner Pbdiag 266A.2 Set-up time for test problems and Pbdiag precon-ditioner - Nonlinear caseTable A.4: Problem and Pbdiag (AMG) set-up times (sec.) - Test Problem 1
h pu = 2 pu = 3 pu = 4

d = 4UMFPACK 1
32

1.59 1.66 5.76
1
64

1.47 4.6 12.85
1

128
7.15 21.57 53.75AMG 1

32
0.54 + 0.27 1.8 + 0.31 5.82 + 0.27

1
64

1.47 + 1.07 4.58 + 1.07 12.91 + 1.08
1

128
7.15 + 7.67 21.67 + 7.48 53.99 + 7.84

d = 6UMFPACK 1
32

2.01 22.92 221.02
1
64

4.9 36.54 262.61
1

128
21.45 109.71 625.23AMG 1

32
1.97 + 0.27 23.07 + 0.27 217.67 + 0.28

1
64

4.78 + 1.08 36.73 + 1.09 257.69 + 1.16
1

128
21.27 + 7.84 110.71 + 7.86 698.77 + 14.2Table A.5: Problem and Pbdiag (AMG) set-up times (sec.) - Test Problem 2

h pu = 2 pu = 3 pu = 4
d = 4UMFPACK 0.3 0.52 1.61 5.74

0.5 0.48 1.62 5.83
0.7 0.48 1.62 5.76
0.9 0.49 1.61 5.81AMG 0.3 1.84 + 0.36 1.61 + 0.28 5.68 + 0.28
0.5 0.48 + 0.28 1.59 + 0.28 5.66 + 0.28
0.7 0.48 + 0.28 1.59 + 0.28 5.75 + 0.28
0.9 0.48 + 0.28 1.59 + 0.28 5.59 + 0.28

d = 6UMFPACK 0.3 1.99 22.86 211.46
0.5 1.91 22.43 212.54
0.7 1.93 22.79 215.94
0.9 1.93 22.56 223.39AMG 0.3 1.89 + 0.28 22.78 + 0.28 216.79 + 0.29
0.5 1.88 + 0.28 22.53 + 0.28 212.85 + 0.29
0.7 1.88 + 0.28 22.21 + 0.28 221.46 + 0.28
0.9 1.87 + 0.28 22.54 + 0.28 220.42 + 0.29



Appendix A: Set-up Time for Test Problems and Preconditioner Pbdiag 267Table A.6: Problem and Pbdiag (AMG) set-up times (sec.) - Test Problem 3
δ pu = 2 pu = 3 pu = 4

d = 4UMFPACK 0.5 0.58 1.83 6.26
0.7 0.56 1.81 6.2
1.0 0.56 1.83 6.19

1.0,0.7,0.5,1.0 0.55 1.82 6.2AMG 0.5 0.58 + 0.3 1.81 + 0.29 6.3 + 0.29
0.7 0.54 + 0.3 1.81 + 0.3 6.2 + 0.3
1.0 0.54 + 0.31 1.81 + 0.31 6.23 + 0.31

1.0,0.7,0.5,1.0 0.54 + 0.31 1.79 + 0.31 6.27 + 0.31
d = 6UMFPACK 0.5 2.13 23.49 222.3

0.7 2.13 23.66 220.6
1.0 2.13 23.78 224.36

1.0,0.7,0.5,1.0 2.12 24.31 219.31AMG 0.5 2.11 + 0.29 23.44 + 0.3 223.16 + 0.3
0.7 2.12 + 0.3 23.88 + 0.3 222.08 + 0.31
1.0 2.13 + 0.31 23.42 + 0.31 222.11 + 0.32

1.0,0.7,0.5,1.0 2.13 + 0.31 23.42 + 0.31 226.08 + 0.32



Appendix B
Simulation Results for PmeanPreconditioner
B.1 Simulations for Pmean preconditioner - Linear caseTable B.1: CG iterations and solution timings for Pmean - Test Problem 1

p = 2 p = 3 p = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4cholinc 1
32

11 0.18 17 0.49 29 1.78
1
64

13 0.59 21 2.27 37 8.61
1

128
21 9.46 35 38.98 64 157.69AMG 1

32
12 0.58 19 1.39 33 4.9

1
64

12 0.78 19 2.97 35 11.44
1

128
13 3.49 20 13.23 35 48.67

d = 6cholinc 1
32

11 0.27 17 1.26 30 6.16
1
64

13 1.12 21 5.9 37 28.08
1

128
21 18.56 35 95.17 64 448.33AMG 1

32
12 0.71 19 3.45 33 15.41

1
64

12 1.48 20 7.95 35 36.46
1

128
13 6.68 20 33.51 37 163.68

268



Appendix B: Simulation Results for Pmean Preconditioner 269Table B.2: CG iterations and solution timings for Pmean - Test Problem 2
p = 2 p = 3 p = 4

σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)
d = 4cholinc 0.3 15 0.62 22 0.66 29 1.85

0.5 18 0.22 26 0.78 38 2.43
0.7 21 0.26 34 1.02 54 3.44AMG 0.3 18 0.66 28 2.26 40 6.57
0.5 20 0.69 33 2.66 49 8.05
0.7 24 0.82 38 3.11 65 10.67

d = 6cholinc 0.3 15 0.35 22 1.71 29 6.17
0.5 18 0.42 28 2.15 42 8.95
0.7 22 0.51 38 2.91 72 15.37AMG 0.3 18 1.18 28 5.57 40 20.68
0.5 21 1.34 33 6.53 51 26.33
0.7 24 1.52 43 8.48 82 42.36Table B.3: CG iterations and solution timings for Pmean - Test Problem 3

p = 2 p = 3 p = 4
δ = σ

µ
Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4cholinc 0.3 20 0.23 33 0.63 53 2.03
0.5 23 0.22 39 0.8 61 2.27
0.7 25 0.23 44 0.94 74 3.11

0.7,0.5,0.6,0.7 24 0.23 42 0.84 69 2.75AMG 0.3 18 0.73 28 2.54 36 6.6
0.5 20 0.77 31 2.79 45 8.26
0.7 23 0.88 36 3.23 55 10.1

0.7,0.5,0.6,0.7 21 0.81 34 3.06 50 9.16
d = 6cholinc 0.3 19 0.35 33 1.84 55 6.69

0.5 21 0.42 37 2.06 62 8.55
0.7 25 0.48 46 2.64 83 12.63

0.7,0.5,0.6,0.7 25 0.44 43 2.42 75 11.41AMG 0.3 18 1.29 29 6.41 40 22.91
0.5 20 1.42 32 7.05 48 27.47
0.7 23 1.67 40 8.81 68 38.89

0.7,0.5,0.6,0.7 21 1.49 36 7.94 60 34.39



Appendix B: Simulation Results for Pmean Preconditioner 270B.2 Simulations for Pmean preconditioner - NonlinearCaseTable B.4: CG iterations and solution timings for Pmean - Test Problem 1
pu = 2 pu = 3 pu = 4

h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)
d = 4UMFPACK 1

32
11 1.06 17 5.56 31 50.88

1
64

11 2.8 17 20.85 31 167.48
1

128
11 15.47 17 89.8 31 671.73AMG 1

32
12 1.01 19 6.3 35 57.54

1
64

12 2.23 20 21.41 37 186.8
1

128
13 9.28 21 86.35 38 729.57

d = 6UMFPACK 1
32

11 1.94 17 30.41 31 431.97
1
64

11 7.54 17 100.33 31 1, 349.11
1

128
11 33.79 17 405.59 31 5, 208.41AMG 1

32
12 2.09 19 34.21 37 515.77

1
64

13 7.23 21 115.74 37 1, 593.79
1

128
13 27.49 21 441.14 39 6, 323.83
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Table B.5: CG iterations and solution timings for Pmean - Test Problem 2
pu = 2 pu = 3 pu = 4

σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)
d = 4UMFPACK 0.3 15 1.15 29 9.8 58 96.53

0.5 22 1.31 46 15.51 102 170.28
0.7 30 1.78 69 23.17 171 285.7
0.9 39 2.3 103 34.7 278 463.81AMG 0.3 17 1.33 31 10.82 62 105.46
0.5 23 1.46 48 16.65 107 180.8
0.7 31 1.95 71 24.61 177 299.15
0.9 41 2.58 106 36.59 284 480.69

d = 6UMFPACK 0.3 15 2.62 29 53.24 60 837.37
0.5 22 3.84 47 85.43 107 1, 486.98
0.7 30 5.27 72 129.58 180 2, 498.76
0.9 40 6.96 107 193.75 294 4, 102.17AMG 0.3 17 3.16 32 58.68 65 913.56
0.5 23 4.2 49 90.11 112 1, 577.59
0.7 32 5.83 75 138.23 186 2, 627.54
0.9 42 7.65 110 202.08 301 4, 252.37
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Table B.6: CG iterations and solution timings for Pmean - Test Problem 3
pu = 2 pu = 3 pu = 4

δ = σ
µ

Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)
d = 4UMFPACK 0.5 20 1.24 40 13.5 86 144.3

0.7 26 1.54 59 19.92 138 231.21
1.0 41 2.44 100 33.79 259 434.85

1.0,0.7,0.5,1.0 40 2.38 100 33.9 259 434.39AMG 0.5 21 1.77 42 14.5 91 153.19
0.7 28 1.94 60 20.75 142 238.62
1.0 42 2.76 101 34.89 266 448.52

1.0,0.7,0.5,1.0 42 2.67 101 34.88 265 446.67
d = 6UMFPACK 0.5 20 3.53 42 76.39 90 1, 263.25

0.7 28 4.91 61 111.51 145 2, 040.56
1.0 42 7.38 105 190.57 280 3, 925.73

1.0,0.7,0.5,1.0 42 7.37 105 190.74 280 3, 918.66AMG 0.5 22 4.01 43 78.62 96 1, 351.2
0.7 29 5.26 63 115.41 152 2, 144.95
1.0 44 7.97 107 196.11 287 4, 016.72

1.0,0.7,0.5,1.0 44 8.01 107 195.57 289 4, 029.83



Appendix C
Set-up Times for Test Problems andPreconditioner PbSGS
C.1 Set-up time for test problems and PbSGS precon-ditioner - Linear caseTable C.1: Problem and PbSGS set-up times (sec.) - Test Problem 1

h p = 2 p = 3 p = 4
d = 4UMFPACK 1

32
1.6 1.64 5.8

1
64

1.48 4.56 12.94
1

128
7.05 21.61 54.04AMG 1

32
1.85 + 0.34 1.64 + 0.27 5.89 + 0.27

1
64

1.47 + 1.07 4.59 + 1.06 12.92 + 1.05
1

128
7.14 + 7.21 21.57 + 7.12 53.96 + 8.43

d = 6UMFPACK 1
32

1.99 23 220.26
1
64

4.88 36.08 261.8
1

128
21.31 110.29 673.95AMG 1

32
1.98 + 0.27 22.63 + 0.27 215.64 + 0.28

1
64

4.85 + 1.1 36.15 + 1.12 263.51 + 1.08
1

128
21.42 + 7.32 110.13 + 8.37 606.56 + 12.32
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Appendix C: Set-up Times for Test Problems and Preconditioner PbSGS 274Table C.2: Problem and PbSGS set-up times (sec.) - Test Problem 2
σ p = 2 p = 3 p = 4

d = 4UMFPACK 0.3 0.52 1.59 5.77
0.5 0.48 1.59 5.81
0.7 0.48 1.58 5.77
0.9 0.48 1.61 5.7AMG 0.3 1.6 + 0.29 1.6 + 0.28 5.64 + 0.28
0.5 0.48 + 0.28 1.58 + 0.28 5.68 + 0.28
0.7 0.48 + 0.28 1.59 + 0.28 5.68 + 0.28
0.9 0.48 + 0.28 1.59 + 0.28 5.64 + 0.28

d = 6UMFPACK 0.3 1.93 22.79 218.77
0.5 1.9 22.73 216.69
0.7 1.89 22.9 214.72
0.9 1.89 22.84 214.83AMG 0.3 1.9 + 0.28 22.77 + 0.28 214.76 + 0.29
0.5 1.9 + 0.28 22.59 + 0.28 214.26 + 0.28
0.7 1.9 + 0.28 22.96 + 0.28 221.55 + 0.29
0.9 1.92 + 0.28 22.69 + 0.28 218.06 + 0.29Table C.3: Problem and PbSGS set-up times (sec.) - Test Problem 3
δ = σ

µ
p = 2 p = 3 p = 4

d = 4UMFPACK 0.5 0.63 1.82 6.31
0.7 0.55 1.81 6.19
1.0 0.54 1.83 6.27

1.0,0.7,0.5,1.0 0.54 1.82 6.27AMG 0.5 1.86 + 0.37 1.81 + 0.29 6.36 + 0.3
0.7 0.56 + 0.3 1.79 + 0.3 6.27 + 0.3
1.0 0.54 + 0.31 1.81 + 0.31 6.38 + 0.31

1.0,0.7,0.5,1.0 0.54 + 0.31 1.8 + 0.31 6.24 + 0.31
d = 6UMFPACK 0.5 2.14 23.61 215.04

0.7 2.15 23.47 223.14
1.0 2.14 24.21 220.55

1.0,0.7,0.5,1.0 2.15 23.37 218.9AMG 0.5 2.11 + 0.29 23.56 + 0.3 219.35 + 0.3
0.7 2.11 + 0.3 23.99 + 0.3 220.22 + 0.31
1.0 2.12 + 0.31 24.04 + 0.31 222.92 + 0.32

1.0,0.7,0.5,1.0 2.1 + 0.31 23.83 + 0.32 223.62 + 0.32



Appendix C: Set-up Times for Test Problems and Preconditioner PbSGS 275C.2 Set-up time for test problems and PbSGS precon-ditioner - Nonlinear caseTable C.4: Problem and PbSGS set-up times (sec.) - Test Problem 1

h p = 2 p = 3 p = 4
d = 4UMFPACK 1

32
1.25 1.49 5.55

1
64

1.32 4.44 12.72
1

128
6.98 21.41 54AMG 1

32
3.23 + 3.15 1.67 + 6.48 5.88 + 12.91

1
64

1.47 + 14.8 4.52 + 34.19 12.84 + 69.16
1

128
7.16 + 114.43 21.5 + 269.13 54.13 + 590.05

d = 6UMFPACK 1
32

1.79 22.17 210.54
1
64

4.66 35.88 254.69
1

128
21.22 109.91 565.43AMG 1

32
1.97 + 5.21 22.92 + 15.56 221.74 + 39.43

1
64

4.87 + 27.74 35.88 + 86.98 263.95 + 215.93
1

128
21.38 + 246.93 109.29 + 810.26 620.38 + 2014.46Table C.5: Problem and PbSGS set-up times (sec.) - Test Problem 2

h p = 2 p = 3 p = 4
d = 4UMFPACK 0.3 1.86 1.47 5.7

0.5 0.34 1.47 5.73
0.7 0.33 1.47 5.73
0.9 0.33 1.47 5.73AMG 0.3 1.66 + 3.06 1.59 + 6.89 5.76 + 13.77
0.5 0.48 + 2.98 1.58 + 6.88 5.72 + 13.78
0.7 0.48 + 3 1.58 + 6.81 5.71 + 13.67
0.9 0.48 + 2.99 1.58 + 6.91 5.71 + 13.73

d = 6UMFPACK 0.3 1.8 23.23 223.37
0.5 1.79 22.99 219.91
0.7 1.79 23.01 220.51
0.9 1.79 22.98 220.33AMG 0.3 1.9 + 5.95 22.69 + 16.53 219.58 + 41.36
0.5 1.87 + 5.51 22.78 + 16.52 215.15 + 41.68
0.7 1.9 + 5.52 22.9 + 16.47 219.37 + 41.87
0.9 1.93 + 5.53 22.27 + 16.6 215.84 + 41.88



Appendix C: Set-up Times for Test Problems and Preconditioner PbSGS 276Table C.6: Problem and PbSGS set-up times (sec.) - Test Problem 3

h p = 2 p = 3 p = 4
d = 4UMFPACK 0.5 0.58 1.68 6.09

0.7 0.41 1.67 6.07
1.0 0.41 1.67 6.07

1.0,0.7,0.5,1.0 0.41 1.67 6.11AMG 0.5 1.52 + 3.21 1.82 + 7.08 6.23 + 14.2
0.7 0.54 + 3.18 1.8 + 7.31 6.23 + 14.75
1.0 0.54 + 3.32 1.81 + 7.64 6.32 + 15.05

1.0,0.7,0.5,1.0 0.54 + 3.34 1.79 + 7.68 6.11 + 15.26
d = 6UMFPACK 0.5 1.99 23.26 214.8

0.7 1.99 23.24 217.64
1.0 1.99 23.31 216.9

1.0,0.7,0.5,1.0 1.97 23.32 218.9AMG 0.5 2.14 + 5.74 23.76 + 17.14 225.16 + 42.47
0.7 2.14 + 5.93 24.03 + 17.53 222.89 + 44.73
1.0 2.13 + 6.23 24.13 + 18.38 221.56 + 46.59

1.0,0.7,0.5,1.0 2.11 + 6.22 23.9 + 18.46 227.19 + 46.53



Appendix D
Numerical Simulations forGauss-Siedel solvers
D.1 Simulations for Gauss-Siedel solvers - Linear caseTable D.1: bSGS and bGS iterations and solution timings (UMFPACK case) - TestProblem 1

p = 2 p = 3 p = 4
h Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4bSGS 1
32

4 0.19 4 0.43 4 0.87
1
64

5 1.14 5 2.67 5 5.38
1

128
5 8.41 5 17.44 5 35.09bGS 1

32
6 0.17 6 0.32 7 0.76

1
64

6 0.68 7 1.88 7 3.74
1

128
6 5.59 7 11.43 7 23.06

d = 6bSGS 1
32

4 0.35 4 1.04 4 2.65
1
64

5 2.13 5 6.45 5 16.24
1

128
5 13.91 5 41.82 5 105.89bGS 1

32
6 0.26 6 0.78 7 2.33

1
64

6 1.28 7 4.56 7 11.42
1

128
6 7.82 7 27.6 7 69.73
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Appendix D: Numerical Simulations for Gauss-Siedel solvers 278Table D.2: bSGS and bGS iterations and solution timings (UMFPACK case) - TestProblem 2
p = 2 p = 3 p = 4

σ Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)
d = 4bSGS 0.3 6 0.29 6 0.69 6 1.38

0.5 8 0.39 9 1.02 10 2.3
0.7 12 0.58 17 1.93 24 5.5bGS 0.3 8 0.2 8 0.47 9 1.04
0.5 11 0.28 13 0.76 15 1.77
0.7 16 0.39 24 1.4 36 4.24

d = 6bSGS 0.3 6 0.55 6 1.66 6 4.22
0.5 9 0.81 10 2.76 12 8.44
0.7 13 1.17 20 5.54 39 27.37bGS 0.3 8 0.38 8 1.14 9 3.25
0.5 11 0.51 14 1.98 17 6.17
0.7 17 0.79 29 4.07 60 21.73Table D.3: bSGS and bGS iterations and solution timings (UMFPACK case) - TestProblem 3

p = 2 p = 3 p = 4
δ = σ

µ
Nit tCPU Nit tCPU Nit tCPU(sec.) (sec.) (sec.)

d = 4bSGS 0.3 6 0.33 6 0.69 6 1.38
0.5 8 0.39 9 1.02 10 2.29
0.7 11 0.53 14 1.61 18 4.13

0.7,0.5,0.6,0.7 11 0.53 14 1.59 18 4.12bGS 0.3 7 0.17 8 0.46 8 0.93
0.5 10 0.24 12 0.69 14 1.62
0.7 14 0.34 20 1.14 28 3.24

0.7,0.5,0.6,0.7 14 0.34 20 1.14 27 3.12
d = 6bSGS 0.3 6 0.55 6 1.65 6 4.21

0.5 8 0.72 10 2.76 11 7.72
0.7 12 1.08 18 4.96 30 21.02

0.7,0.5,0.6,0.7 12 1.08 18 4.94 30 21.01bGS 0.3 8 0.37 8 1.11 9 3.19
0.5 11 0.5 13 1.81 16 5.69
0.7 16 0.73 25 3.45 46 16.28

0.7,0.5,0.6,0.7 16 0.73 25 3.46 46 16.25



Appendix E
Set-up Times for Test Problems andPreconditioner PSchur
E.1 Set-up times for test problems and PSchur pre-conditioner - Linear caseTable E.1: Problem and PSchur set-up times (sec.) - Test Problem 1

h p = 2 p = 3 p = 4
d = 4UMFPACK 1

32
0.72 0.18 0.18

1
64

0.29 0.29 0.29
1

128
1.22 1.24 1.26AMG 1

32
1.02 + 0.57 0.18 + 0.49 0.18 + 0.49

1
64

0.29 + 2.5 0.29 + 2.51 0.29 + 2.46
1

128
1.23 + 22.03 1.19 + 22.44 1.2 + 22.45

d = 6UMFPACK 1
32

0.19 0.19 0.19
1
64

0.32 0.32 0.33
1

128
1.35 1.33 1.31AMG 1

32
0.19 + 0.49 0.19 + 0.49 0.19 + 0.49

1
64

0.32 + 2.63 0.32 + 2.52 0.33 + 2.53
1

128
1.32 + 22.56 1.33 + 21.98 1.34 + 22.1
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Appendix E: Set-up Times for Test Problems and Preconditioner PSchur 280Table E.2: Problem and PSchur set-up times (sec.) - Test Problem 2

σ p = 2 p = 3 p = 4
d = 4UMFPACK 0.3 1.36 0.18 0.18

0.5 0.18 0.18 0.2
0.7 0.18 0.18 0.18AMG 0.3 1.46 + 0.56 0.18 + 0.49 0.19 + 0.49
0.5 0.18 + 0.49 0.18 + 0.48 0.18 + 0.49
0.7 0.18 + 0.49 0.18 + 0.5 0.19 + 0.49

d = 6UMFPACK 0.3 0.19 0.19 0.2
0.5 0.19 0.19 0.2
0.7 0.19 0.2 0.2AMG 0.3 0.2 + 0.49 0.19 + 0.49 0.21 + 0.49
0.5 0.19 + 0.49 0.19 + 0.49 0.21 + 0.49
0.7 0.19 + 0.5 0.19 + 0.49 0.21 + 0.49Table E.3: Problem and PSchur set-up times (sec.) - Test Problem 3

δ = σ
µ

p = 2 p = 3 p = 4

d = 4UMFPACK 0.3 0.2 0.17 0.17
0.5 0.17 0.17 0.17
0.7 0.17 0.17 0.17

0.7,0.5,0.6,0.7 0.17 0.17 0.17AMG 0.5 1.47 + 0.71 0.17 + 0.58 0.17 + 0.57
0.7 0.17 + 0.57 0.17 + 0.57 0.17 + 0.58
1.0 0.17 + 0.58 0.17 + 0.58 0.17 + 0.58

1.0,0.7,0.5,1.0 0.17 + 0.58 0.17 + 0.57 0.17 + 0.58
d = 6UMFPACK 0.3 0.19 0.18 0.19

0.5 0.18 0.19 0.19
0.7 0.18 0.18 0.2

0.7,0.5,0.6,0.7 0.18 0.19 0.2AMG 0.5 0.19 + 0.57 0.18 + 0.58 0.19 + 0.58
0.7 0.18 + 0.57 0.19 + 0.58 0.2 + 0.57
1.0 0.18 + 0.57 0.18 + 0.57 0.2 + 0.58

1.0,0.7,0.5,1.0 0.18 + 0.57 0.19 + 0.57 0.2 + 0.58



Appendix E: Set-up Times for Test Problems and Preconditioner PSchur 281E.2 Set-up times for test problems and PSchur pre-conditioner - Non-linear caseTable E.4: Problem and PSchur set-up times (sec.) - Test Problem 1

h pu = 2 pu = 3 pu = 4
d = 4UMFPACK 1

32
0.78 1.59 5.68

1
64

1.32 3.9 11.32
1

128
5.7 15.69 38.74AMG 1

32
0.79 + 0.6 1.58 + 0.49 5.86 + 0.56

1
64

1.31 + 2.65 3.92 + 2.5 11.17 + 2.51
1

128
5.63 + 21.37 15.86 + 22.7 39.06 + 21.78

d = 6UMFPACK 1
32

1.95 22.6 210.17
1
64

4.25 33.19 254.85
1

128
16.11 82.01 431.86AMG 1

32
1.98 + 0.5 22.31 + 0.49 213.07 + 0.51

1
64

4.14 + 2.5 32.89 + 2.53 248.62 + 2.64
1

128
15.5 + 24.85 83.42 + 22.19 595.74 + 35.51Table E.5: Problem and PSchur set-up times (sec.) - Test Problem 2

σ pu = 2 pu = 3 pu = 4
d = 4UMFPACK 0.3 1.15 1.67 5.82

0.5 0.52 1.65 5.75
0.7 0.53 1.64 5.73
0.9 0.53 1.65 5.66AMG 0.3 1.56 + 0.6 1.65 + 0.51 5.81 + 0.56
0.5 0.52 + 0.51 1.66 + 0.51 5.72 + 0.53
0.7 0.52 + 0.5 1.63 + 0.51 5.81 + 0.51
0.9 0.52 + 0.51 1.64 + 0.51 5.75 + 0.52

d = 6UMFPACK 0.3 2.05 22.57 211.48
0.5 1.95 22.81 212.87
0.7 1.97 23.37 210.49
0.9 1.99 23 216.49AMG 0.3 1.99 + 0.51 22.8 + 0.52 209 + 0.51
0.5 1.94 + 0.51 23.11 + 0.5 214.48 + 0.62
0.7 1.95 + 0.52 22.68 + 0.51 213.19 + 0.52
0.9 1.96 + 0.52 22.88 + 0.51 212.63 + 0.51



Appendix E: Set-up Times for Test Problems and Preconditioner PSchur 282Table E.6: Problem and PSchur set-up times (sec.) - Test Problem 3

δ pu = 2 pu = 3 pu = 4
d = 4UMFPACK 0.5 0.63 2.18 6.38

0.7 0.6 1.84 6.25
1.0 0.58 1.86 6.32

1.0,0.7,0.5,1.0 0.58 1.88 6.29AMG 0.5 0.73 + 0.53 1.86 + 0.5 6.33 + 0.51
0.7 0.57 + 0.51 1.9 + 0.51 6.42 + 0.51
1.0 0.57 + 0.6 1.84 + 0.51 6.25 + 0.55

1.0,0.7,0.5,1.0 0.57 + 0.51 1.86 + 0.5 6.32 + 0.53
d = 6UMFPACK 0.5 2.26 24.13 221.01

0.7 2.19 23.92 215.01
1.0 2.2 23.57 217.12

1.0,0.7,0.5,1.0 2.18 23.39 221.24AMG 0.5 2.27 + 0.52 24.06 + 0.51 222.52 + 0.52
0.7 2.19 + 0.52 23.86 + 0.52 216.1 + 0.53
1.0 2.19 + 0.52 23.78 + 0.53 221.73 + 0.57

1.0,0.7,0.5,1.0 2.19 + 0.52 23.99 + 0.53 220.69 + 0.55



Appendix F
Notation
F.1 Notation for Chapter 2

u(x) := potential head
D := physical domain
Γ := boundary of physical domain D

ΓD := Dirichlet boundary of Γ
ΓN := Neumann boundary of Γ
C := hydraulic conductivity tensorn := unit outward normal vector to ΓN

g(x) := prescribed constant head on ΓD

q := �uid discharge (�ux)
qx := x-component of �uid discharge
qy := y-component of �uid discharge

L2(D) := {w : w is de�ned on D and ∫
D
w2dD <∞}

L2(D)d := {v : vi ∈ L2(D), i = 1, . . . , d}283
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H1(D) := {w : w ∈ L2(D) and ∂w

∂xi
∈ L2(D), i = 1, . . . , d}

H1
0 (D) := {w ∈ H1(D) : w = 0 on Γ}

H1
0,D(D) := {w ∈ H1(D) : w = 0 on ΓD}

v := (v1, . . . , vd)
T

H(div ;D) := {v : v ∈ L2(D)d and ∇ · v ∈ L2(D)}

H
1

2 (Γ) := {g : g = wΓ for some w ∈ H1(D)}

H− 1

2 (Γ) := {q : q = (v · n)Γ for some v ∈ H(div ;D)}

H0,N(div ;D) := {v ∈ H(div ;D) : 〈v · n, w〉 = 0, ∀w ∈ H1
0,D(D)}

T h := Partition of D
K := Finite element of T h

h := Discretisation parameter
Eh := collection of numbered edges (D = 2) or faces (D = 3)

Ih ⊂ Eh := {e ∈ Eh : e 6⊂ ΓD}

RT 0(K) :=
{

v : v(x) = Bv̂(ξ)
J

∀ ξ ∈ K̂ and v̂ ∈ RT 0(K̂)
}

RT 0(D;T h) := {v ∈ H(div ;D) : v|K ∈ RT 0(K) ∀K ∈ T h}

M0 :=
{

v ∈ L2(D)d and q|K ∈ RT 0(K) ∀K ∈ T h
}

V h := M0 ∩H0,N(div ;D) =
{

v ∈ RT 0(D;T h) and v · n|ΓN
= 0
}

W h := {w ∈ L2(D) : w|K ∈M0(K) ∀ K ∈ T h}

φj, i = 1, . . . , n := Scalar basis functions for W h

ϕi, i = 1, . . . , m := Vector basis functions for V h

Ai,j := global weighted velocity matrix
Bk,i := divergence operator matrix

Λ0

(

Eh
)

:=
{

λh : λh|e ∈ Λ0(e)∀e ∈ Eh
}

Λ0,ΓD
:= {λ ∈ Λ (Eh) : λ = 0 on ΓD} ,

Λg,ΓD
:=
{

λ ∈ Λ (Eh) : λ = gh on ΓD

}

µj, i = 1, . . . , l := Scalar basis functions for Λ0,ΓD



Appendix F: Notation 285F.2 Notation for Chapter 4 and 5

Ω := set of random events
= := minimal σ-algebra
Pr := probability measure

(Ω,=, P r) := probability space
u(x, ω) := random potential solution
q(x, ω) := random �ux solution
C(x, ω) := random conductivity coe�cient
µ(x) := mean conductivity value

σ := standard deviation of conductivity random �eld
βi(x), λi := eigenfunctions and eigenvalues of the covariance function

ξi := normal or uniform random variables
ρ(x,x′) := correlation function of C(x, ·)
L2(Ω) := {w : w is de�ned on Ω and ∫

Ω

w2dΩ <∞}

W := H1
0 (D)⊗ L2(Ω)

Sh ⊂ H1
0 (D)

T h ⊂ L2(Ω)

W h := Sh ⊗ T h ⊂ W = H1
0 (D)⊗ L2(Ω)

V := {v(x, ξ) ∈ H(div;D)⊗ L2(Ω) : v(x, ξ) · n = 0 on ΓN × Ω}

Y h ⊂ H(div;D)

V h := Y h ⊗ T h ⊂ V = H(div;D)⊗ L2(Ω)

Xh := L2(D)

W h := Xh ⊗ T h ⊂ W = L2(D)⊗ L2(Ω)

Zh := partition of D
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4 := Finite element of Zh

Nu := number of nodes in Zh

Ne := number of elements in Zh

Nedg := number of edges in Zh

p := order of complete polynomials
P := (d+p)!

d!p!

Li(ξj) := univariate Legendre polynomials
Hi(ξj) := univariate Hermite polynomials

{χi}, i = 1, . . . , P := stochastic basis functions
α(i,j) := multi-index

(K0)r,s =
∫

D
µ∇φr(x)∇φs(x)dx := FEM mean sti�ness matrix

A∗
i,i := 〈χi〉2 ⊗K0, i = 1, . . . , P

(Kl)r,s = σ
√
λl
∫

D
βl(x)∇φr(x)∇φs(x)dx := FEM `�uctuation' sti�ness matrices

A?
i,j :=

∑d
l=1 [〈ξlχiχj〉]⊗Kl

A := G0 ⊗K0 +
∑d

k=1Gk ⊗Kk

z0 := initial guess
r := residual vector

(K0)r,s =
∫

D
1
µ
ψr(x)ψs(x)dx := MFEM mean sti�ness matrix

A∗
i,i := 〈χi〉2 ⊗K0

(Kl)r,s = σ
√
λl
∫

D
βl(x)ψr(x)ψs(x)dx := MFEM `�uctuation' sti�ness matrices

(B0)r,s =
∫

D
φr(x)∇ · ψs(x)d(x) := divergence operator

Bi,i := 〈χi〉2 ⊗ B0

L(x, ω) := random conductivity coe�cient (Lognormal)
pu := order of complete polynomials for u
pL := order of complete polynomials for L


