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Summary

This thesis is concerned with the development of numerical methods for the predic-

tion of flow of polymer solutions and melts. Many constitutive models are available

to describe the behaviour of such fluids. The classical Oldroyd B model is used in this

thesis to simulate the flow of polymer solutions. The extended pom-pom model is a

model based on the recently developed pom-pom model, and is adopted to predict

the flow of polymer melts. Some of the mathematical properties of this model are

presented in this thesis.

The numerical algorithm that is used to simulate the fluids is based on a spectral

element method. A modified interpolation function is presented that is able to deal

efficiently with axisymmetric problems. The discretized set of equations are solved

using iterative inversion. By using appropriate preconditioners, the efficiency of the

iterative procedure is increased dramatically. Another possibility for speeding up the

algorithm is to use the Schur method, which reduces the size of the discrete problem.

A combination of this method with preconditioned iterative methods is shown to be

an efficient way of determining solutions.

The equations in the constitutive model can be solved coupled to the conservation of

mass and momentum. This means that all information about the state of the fluid

is obtained simultaneously. When the equations are solved uncoupled, the stress is
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calculated from the velocity on the previous time level. Using this method, higher

Weissenberg numbers could be reached in the numerical simulations. This number is

increased even more when upwinding methods such as SUPG or LUST are used.

Solutions of the planar channel flow and flow past a confined cylinder are presented for

Newtonian fluids, Oldroyd B fluids and XPP fluids. Solutions for both the transient

start-up and steady flow are given. The stability of solutions of the Oldroyd B model

is analyzed. Both single mode and multi-mode versions of the XPP model are used.
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Chapter 1

Introduction

This thesis is concerned with the development of numerical methods for the efficient

and accurate prediction of flows of viscoelastic fluids. The research is in the broad

field of rheology, which can be defined as the science of the deformation and flow of

matter. It involves the study of viscoelastic materials that possess characteristics of

both elastic solids and viscous fluids.

This chapter starts by giving a brief historical account of the field of rheology in sec-

tion 1.1. It goes on to classify the different fluids within the class of non-Newtonian

fluids in section 1.2. In section 1.3 some phenomena exhibited by these fluids are de-

scribed, and section 1.4 states the industrial importance of research in non-Newtonian

fluid mechanics. The aim of this thesis is given in section 1.5, after which the frame-

work in which to place this work is presented in section 1.6. Some comments about

the numerical codes that have been used and developed for this research are made in

section 1.7. Finally section 1.8 presents the contents of this thesis.
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1.1 A Very Brief History

The first major contribution to the mechanics governing elastic solids was made by

Hooke, who in 1678 proposed that ’the power of any string is in the same proportion

with the tension thereof’. In a more modern interpretation, Hooke’s law reads that

the stress in an elastic solid is proportional to the strain.

The interest in the dynamics of viscous fluids was first raised in the late seventeenth

and early eighteenth century, by the idea that the speed of a ship was affected by the

resistance of the waterflow around it. The publication of Newtons Principia in 1687

first provided a theoretical basis for study of fluid flow. In ideal viscous fluids, the

shear stress is linearly dependent on the rate of deformation of the fluid. This law

has its origin in Newton’s statement that ’the resistance which arises from the lack

of slipperiness originating in a fluid, other things being equal, is proportional to the

velocity by which the parts of the fluid are being separated from each other’.

The widely celebrated Navier-Stokes equations are a set of mathematical equations

that describe the flow of ideal viscous fluids, like water. These were retrieved inde-

pendently by both Navier and Stokes, in the first half of the nineteenth century. The

fluids that are modelled by these equations are called Newtonian fluids, since they

obey the above mentioned linear constitutive relation between stress and deformation.

When a fluid does not obey the linear relation, it is classified as a non-Newtonian

fluid. Rheology can therefore also be seen as non-Newtonian fluid mechanics.

The first known study of materials that can neither be classified as elastic solids nor

as viscous fluids, was carried out by Weber (1835) on silk threads in which the stresses

that are present in the thread when a load is applied to it, slowly relax on the removal

of the load. In 1867 Maxwell introduced his famous empirical differential constitutive
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equation that relates the shear stress to deformation and stress relaxation.

To find suitable constitutive relations, which differ from fluid to fluid, is one of the

main challenges in rheology. Oldroyd’s study of invariance of material properties with

respect to frame of reference led to the well known Oldroyd model in 1950. Since

then numerous contributions have been made to constitutive modelling, resulting in

so many different constitutive models, that it is sometimes said there are as many

constitutive models as there are rheologists. In this thesis only a few of these consti-

tutive models will be introduced.

Computational rheology started during the 1960s with the use of Finite Difference

Methods, shortly followed during the 70s and 80s with the use of more sophisticated

Finite Element, Finite Volume and Spectral Element Methods. The major challenge

in this field is the tackling of the so called ’high Weissenberg number problem’. This

refers to the breakdown of numerical simulations when only a limited amount of

elasticity is introduced to the equations that describe the flow of the fluid.

1.2 Non-Newtonian Fluid Classification

Any material that does not obey the linear Newtonian relation between stress and

deformation can be classified as a non-Newtonian fluid. Within this broad class of

non-Newtonian fluids many distinct cases are identifiable on the basis of their reaction

to deformation, i.e. their constitutive relations. Given here are different types of non-

Newtonian fluids that are often used to classify materials.
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1.2.1 Shear-thinning and shear-thickening fluids

Some fluids exhibit a decrease in viscosity when the rate of deformation acting on the

fluid is increased. These fluids are said to be shear-thinning or pseudoplastic. In a

shear thinning fluid, the viscosity decreases with increasing rate of deformation. The

opposite is a shear-thickening fluid, where the viscosity increases with rate of defor-

mation, i.e. the stresses increase progressively. A power law provides the simplest

constitutive equation for this class of fluids. The constant viscosity in the Newtonian

stress relation (2.11) is replaced by a viscosity that is a function of dxy,

η = η(dxy) = kd(n−1)
xy , (1.1)

where k is a constant, and dxy is the deformation gradient. When n = 1, the power

law reduces to a Newtonian fluid. A shear-thinning fluid is described by n < 1, a

shear-thickening fluid by n > 1. More complex relations for this class of fluids can

be found in [57] or [38].

1.2.2 Yielding fluids

Some materials only start deforming after a certain amount of shear stress is exceeded.

This amount is called the yield stress, and the fluids are known as yielding fluids. Of

course, yielding fluids can also be shear-thinning or shear-thickening. This however

is not a neccesary requirement, and an idealized material that is used in analytic

investigations, the Bingham plastic, is characterized by a constant viscosity. A perfect

example of a yielding fluid is toothpaste.

1.2.3 Rheopectic and Thixotropic fluids

The relation between shear stress and shear rate can also depend on the time that

the fluid has undergone the shearing. In thixotropic fluids, the shear stress decreases

when the fluid is sheared at a constant rate. Structure in the fluid is progressively
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broken down with time, resulting in a decreasing viscosity. The opposite effect is

typical for rheopectic fluids. Formation of structure with time results in increasing

shear stress at a constant shear rate, and the viscosity increases.

1.2.4 Viscoelastic fluids

The feature that distinguishes viscoelastic fluids from the classes named above is

that they exhibit partial elastic recovery after deformation has been applied. This

is a characteristic that is related to a solid rather than to a fluid, and therefore vis-

coleastic fluids are often said to lie between a solid and a fluid. The most important

material parameter that characterises viscoelastic fluids is the relaxation time.

The relaxation time of a material is the time after which stresses that were induced

by some deformation or strain relax to a certain level. Every material has a nonzero

relaxation time. For fluids the relaxation time is so small (10−12s for water) that

stress relaxation is assumed to be instantaneous. Solids however are characterized by

relaxation times of the order of years rather than seconds, and relaxation of stresses

is so slow that they are assumed not to relax at all.

The relaxation times of viscoelastic fluids lie well in between these extrema. Stress

relaxation is typically of the order of a few seconds. Silly putty is a good example of a

viscoelastic fluid. It can bounce like a solid because the bouncing process is complete

before the stresses can relax. Before human patience runs out however, silly putty

can also be observed to flow like a fluid. Solvents of polymer in a viscous matrix or

melts of polymer are also viscoelastic fluids.
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1.3 Viscoelastic Fluid Phenomena

Viscoelastic fluids behave differently from Newtonian fluids under many circum-

stances. The bouncing and flowing silly putty has already been mentiond. A few

of the most well known other examples are given below.

When a viscoelastic fluid is extrudated from a die, the diameter of the extrudate may

swell. The extent of this swelling may be up to several times the diameter of the

original die. This phenomena is known as extrudate swelling or die-swell. Newto-

nian fluids leaving a die show exactly the opposite behaviour and the diameter will

decrease.

When a rod is rotated in a cup filled with a viscoelastic fluid, the fluid climbs up

the rod. This effect is attributed to a difference in angular and radial normal stress

components. This rod climbing is also known as the Weissenberg effect. Newtonian

fluids on the other hand exhibit no rod climbing. Instead the fluid level of a Newto-

nian fluid would decrease near the rotating rod due to centrifugal forces.

A widely used benchmark problems in computational rheology is the flow through a

contraction. A phenomena typical for viscoelastic fluids in this problem is that large

vortices may appear in the salient corner of such a geometry. The size of this vortex

can increase dramatically with increasing elasticity. The corner vortex is also present

for Newtonian fluids but it is much smaller. To force a fluid through a contraction a

certain pressure drop is needed. Another viscoelastic effect is that this pressure drop

changes with changing elasticity. This means that to achieve the same flow rates for

Newtonian and viscoelastic fluids of the same viscosity, a higher pressure drop may

have to be adopted.
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1.4 Industrial Importance

Non-Newtonian fluids abound in nature and industry and this accounts for the inter-

est in their flow properties and behaviour. Ink in printers, paint dripping from our

brushes before it reaches the wall, bread dough that is not mixed thoroughly enough

when it should be, the molten plastics in a complex production line in a factory before

it ends up in our computer screen and video player cases. Successful prediction of

these flows could lead to better process control and more efficient manufacturing.

Since for most real flows, the set of mathematical equations that model the fluid is

too complex to solve analytically, they are solved using a numerical scheme. The

advantages of this approach is that it is cheap, parameters may be varied endlessly,

and all data is instantly available, at every point in the flow. Disadvantages are

that the results can only be as good as the model that simulates the flow, and that

non-physical numerical artefacts may be present in the solution. It is therefore of the

utmost importance that the results of a numerical simulation are sharply questioned

before they can be accepted as a simulation of a real situation.

1.5 Aim of the Thesis

The major part of this work is to find numerical algorithms that are suitable to solve

existing non-Newtonian fluid models. In order to do so, the efficiency and the sta-

bility of these algorithms are analyzed and enhanced if possible. Focus will be on

the preconditioners to solve the systems of equations more efficiently, on upwinding

methods that can be used to achieve increased stability, on the improvement of the

accuracy of the iterative solving of the equations, and on the analysis of steady and

transient results for both simple and complex flows.
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A spectral element method is chosen to approximate the spatial dependence of the

set of equations numerically, and higher order approximations will also be adopted

for the temporal discretization. It is shown that different temporal discretizations

lead to different sets of equations that can have a great effect on the stability of the

numerical algorithm.

Theoretical analysis is performed on the recently developed pom-pom model [34] and

a derivative, the extended pom-pom model [61]. The behaviour of the extensional

viscosities of these models are compared, and an attempt is made to determine the

type of the equations.

The spectral element method itself is also analyzed, with respect to its behaviour near

symmetry boundary conditions, and to the possibility of using higher order transfi-

nite mappings.

Apart from the pom-pom type models, attention is given to the more classical upper

convected Maxwell (UCM) and Oldroyd B models. The extended pom-pom model

will be conveniently nondimensionalized, in order to make it suitable for implemen-

tation into an existing solver. As will be shown later in this thesis, the UCM and the

Oldroyd-B model, may be used to simulate polymer solutions, whereas the pom-pom

models are suitable for simulation of polymer melts. It is not attempted in this thesis

to enhance these models to obtain more realistic representations of real fluids.

1.6 Framework of this Research

After performing some calculations involving Newtonian fluids, this thesis goes on to

simulate the flow of polymer solutions and polymer melts. In this sections a review

is given of relevant work by other researchers in these fields.
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1.6.1 Polymer solutions

Differential constitutive models such as the upper-convected Maxwell (UCM), Ol-

droyd B and Phan-Thien/Tanner models are nonlinear and this property has a con-

siderable impact on the performance and stability of numerical methods. The degree

of nonlinearity of the governing system of partial differential equations may be quan-

tified in terms of a dimensionless number, We, known as the Weissenberg number

which can be viewed as a measure of the memory of the fluid. As mentioned before,

most numerical algorithms fail to converge above a critical value of this parameter

when conventional closed form constitutive models such as the UCM or Oldroyd B

models are used.

Over the last twenty years significant progress has been made in the development

of reliable numerical methods for solving steady viscoelastic flow problems (see the

monograph of Owens and Phillips [38], for example). On a range of benchmark prob-

lems there has been agreement across a range of numerical methods for particular

models in terms of global quantities such as the drag on a sphere or cylinder in a

viscoelastic medium. Stabilization techniques have been used to remove numerical

instabilities in many instances in order to extend the range of Weissenberg numbers

over which converged numerical solutions are obtained. One such technique is the

elastic viscous split stress (EVSS) formulation, developed by Perera and Walters [43],

in which a change of variables is introduced with the purpose of increasing the ‘ellip-

ticity’ of the momentum equation and, therefore, the stability of the discretization.

Other successful stabilization techniques are described in Owens and Phillips [38].

These methods have been shown to work well for steady problems.

In the context of spectral methods, Fiétier and Deville [15] have explored the use of

stabilization techniques such as the discrete EVSS (DEVSS) method of Guénette and
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Fortin [21] and the filtering method of Mullen and Fischer [36]. However, these tech-

niques only had limited success in increasing the critical value of We. Furthermore,

the authors were concerned that the use of stabilization techniques could prevent a

detailed investigation into the onset and development of physical instabilities that

are observed experimentally (see Smith et al. [55], for example).

Upwinding techniques are another example of stabilization methods. The Streamline

Upwind/Petrov-Galerkin (SUPG) [5] technique was originally developed to achieve

a stabilized finite element method. In their Locally Upwinded Spectral Technique

(LUST), Owens et al. [39] extended the method for the use with spectral elements

methods. The stability of the steady flow of an Oldroyd B fluid past a cylinder im-

proved compared to the SUPG method. Higher Weissenberg numbers were achieved

and the stress fields were found to be much smoother.

Much theoretical and numerical work has been performed with respect to the flow of

UCM and Oldroyd B fluids in a planar channel. In the seventies, Porteous and Denn

[45], Ho and Denn [23] and later Lee and Finlayson [31] and Larson [30] performed

linear stability analyses of this flow.

In a more recent paper Sureshkumar and Beris [56] used an Arnoldi algorithm, which

computes a group of the most unstable eigenmodes, to show that the addition of sol-

vent viscosity considerably reduced the destabilizing effect of elasticity found by Por-

teous and Denn [45] for the UCM fluid in the inertial regime. They also commented

on the dire consequences of inadequately resolving the continuous eigenmodes. For a

given mesh the error in the approximation of these eigenmodes was shown to increase

linearly with the Weissenberg number. Therefore, at relatively large values of We

these modes could give rise to artificial instabilities if insufficient spatial refinement
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is used in the computations.

Wilson et al. [65] studied the structure of the spectrum for creeping flow of both

UCM and Oldroyd B fluids. The addition of solvent viscosity is found to increase

the complexity of the eigenspectrum. Although the authors were not able to prove

that inertialess plane Poiseuille flow is linearly stable for all values of the Weissenberg

number, no unstable eigenvalues were observed. However, poorly resolved modes of

the continuous spectrum can produce spurious instabilities. The problem of under-

resolution of the continuous part of the spectrum for UCM and Oldroyd B models

and its impact on the generation of spurious instabilites for plane Couette flow was

studied by Keiller [29]. He showed that, since the continuous part of the spectrum

scales linearly with both wavenumber kx and the order of the spectral approximation

N , the critical Weissenberg number will scale with the aspect ratio of the mesh ele-

ments kx/N when the under-resolved part of the continuous spectrum is causing the

flow to appear unstable. He also showed that for calculations with the UCM model,

the addition of a small amount of solvent viscosity could stabilize the spurious modes.

Atalik and Keunings [1] performed a nonlinear analysis of the evolution of two-

dimensional disturbances for plane Poiseuille flow of the Giesekus fluid, which in-

cludes the UCM and Oldroyd B fluids as special cases, in the low and high Reynolds

number regimes. The numerical scheme of Atalik and Keunings is based on a spec-

tral discretization in space and a Crank-Nicolson/Adams-Bashforth discretization in

time. The authors noted that the linear operator describing the time evolution of

infinitesimal disturbances is non-normal for this problem. Thus, although all the

eigenvalues of the two-dimensional linear operator have negative real parts, so that

any infinitesimal disturbance will ultimately decay, transient growth of the distur-

bances is possible. If the intermediate growth is significant enough the disturbances
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that are misfit to the eigendirections of the linear stability operator will interact in

a nonlinear fashion and eventually drive the system to a nonlinear instability. In the

inertial regime they showed that finite amplitude periodic waves develop beyond a

critical Reynolds number. Increasing the elasticity number has a destabilizing effect

at first followed by restabilization.

Other pertinent issues such as the mathematical type of the equations, loss of evolu-

tion and the high Weissenberg number problem, for example, are discussed in Owens

and Phillips [38], Renardy et al. [51] and Renardy [48, 49, 50]. More recently, Lozinski

and Owens [32] have derived an energy estimate for the velocity and stress compo-

nents for both inertial and creeping flows of an Oldroyd B fluid. They explained that

conventional discretization schemes for the Oldroyd B model may violate the energy

estimate and deliver an approximation that fails to respect important properties of

the continuous problem. A novel numerical scheme that respects the energy esti-

mate and guarantees satisfaction of key properties of the model was developed and

implemented by the authors.

1.6.2 Polymer melts

In the mathematical modelling of polymer melts, significant progress has been made

over the last decade. Established traditional models for polymer melts such as the

Phan-Thien Tanner (PTT), Giesekus and K-BKZ models have been unsuccessful in

predicting accurately the nonlinear behaviour of materials in both shear and exten-

sion. However, a new constitutive model developed by McLeish and Larson [34],

known as the pom-pom model, has the facility to overcome this shortcoming.

Recent developments in constitutive modelling of polymer solutions and melts have

been based on a kinetic theory approach. Models based on this approach provide a
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coarse-grained description of the polymer dynamics in terms of the microstructure of

the fluid. A knowledge of the microstructure is necessary in order to determine the

stress since the stress depends on the conformations of the model polymer molecules,

viz. the orientation and degree of stretch of a molecule.

The rheological description of a polymer melt is quite distinct from that for polymer

solutions in which the polymer molecules are assumed to be sufficiently disperse so

as not to interact with each other. In a polymer melt the dynamics of each polymer

molecule is influenced by the surrounding molecules.

Since it is impossible to describe the molecular interactions in detail, it is important

to distil the crucial features of the polymer dynamics in order to derive a tractable

model. Thus, Doi and Edwards [11], in the derivation of the model for linear polymers

that bears their name, identified reptation as being a crucial concept. The reptation

concept assumes that individual polymer molecules are constrained to move in a tube

formed by neighbouring polymer molecules. Effectively, the perpendicular motion of

a polymer chain is constrained within a tube of given radius generated along its back-

bone while parallel to the tube a linear polymer chain is free to diffuse. The snake-like

motion of the chain inspired de Gennes [9] to dub this motion as reptation.

An extension of these ideas to branched polymers, for which more complicated re-

laxation processes are involved than for linear polymers, was developed into a con-

stitutive model by McLeish and Larson [34]. McLeish and Larson [34] identified the

topology of branched polymer molecules as a key concept in the development of a

mathematical model in addition to reptation theory. The model assumes that the

polymer chains are represented by a backbone segment connecting two identical sets

of q arms (‘pom-poms’) at the branch points. The branch points slow down the rep-
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tation motion of the backbone section by pinning the molecule in place at the tube

junctions. The free ends of the arms are still able to move however, and the polymer

frees itself from the tube by ‘arm-retraction’. The arms gradually work their way out

of the tubes towards the branch points by diffusion. Once the arms have relaxed, the

backbone can subsequently relax by moving the branch points. The backbone can

then be treated as a linear polymer with two diffuse ‘blobs’ comprising the diffusing

arms, and the chain can be modelled as a dumbbell inside a tube. A key feature

of the model is therefore distinct relaxation times for these two processes, i.e. the

orientation and stretch of the backbone section. Due to balance of tension in the

backbone of the molecule, and in the arms, the stretch is not allowed to be greater

than q. At this point, the arms are retracted into the tube and this ensures that the

stretch is bounded, although retraction lengths are found to be very small.

The differential approximation of the pom-pom model has been successfully used in

numerical calculations of the four-to-one contraction benchmark problem, by Bishko

et al. [3], and qualitative agreement with experiments using LDPE melts was demon-

strated. Inkson et al. [25] used a multi-mode pom-pom model in which the parameters

are determined from the linear relaxation spectrum and the transient extensional vis-

cosity, and found quantitative agreement between experiments and model predictions

for other rheological measurements such as transient shear viscosity and transient first

normal stress difference for LDPE.

The original pom-pom model suffers from three problems. First, the model predicts

a zero second normal stress difference. Secondly, there is an unphysical discontinuity

in the gradient of the extensional viscosity when the stretch is equal to q at steady

state. Thirdly, the shear stress has a maximum. Verbeeten et al. [61] introduced a

modified model, the eXtended Pom-Pom (XPP) model, to circumvent some of these
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problems. A modification to the stretch equation, as introduced by Blackwell [4],

which allows for branch point displacement, is used to overcome the discontinuity in

the gradient of the extensional viscosity. The retraction of the arms into the tube has

been neglected, and thereby the constraint that the stretch cannot be larger than the

number of arms is removed. A Giesekus-like term has been added to the orientation

equation, to introduce a non-zero second normal stress difference. Furthermore, the

orientation equation is bounded for high strain rates. Two variants of the XPP model

have been developed. The double equation version of the XPP model comprises evo-

lution equations for the orientation and the stretch, while the single equation version

provides a constitutive equation in terms of the stress, and both the orientation and

the stretch are directly coupled to the stress. The XPP model has been succesfully

implemented in a finite element method and satisfactory quantitative agreement has

been found in comparisons between experiments with LDPE melts and numerical

simulations using a multi-mode XPP model (see Verbeeten et al. [62], [63]).

1.6.3 Spectral element developments

Iterative methods can be made more efficient by using of preconditioners. A much

used preconditioner in spectral elements is based on local finite element discretiza-

tions of the same problem. Preconditioners of this are called overlapping Schwarz

preconditioners, and they are based on the classical additive Schwarz method de-

veloped by Dryja and Widlund [12] and domain decomposition methods (see [54]).

These preconditioners and have been succesfully adopted in calculations using the

spectral element method by Pavarino [40], [41] and Fisher et al. [16].

The Schur complement method [46] is an alternative technique to speed up calcula-

tions. It effectively decreases the size of the discrete problem by splitting it up into a

problem associated to unknowns only on the boundaries of the spectral elements and
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separate problem involving the internal unknowns. In a spectral element context,

this method has been used for example by Couzy and Deville [8] and Pavarino and

Warburton [42].

1.7 Numerical Codes

The results that are presented in chapters 5 to 7 have been generated with two

separate computer codes. Parts of these codes were developed by Xavier Escriva and

Marc Gerritsma, former research assistants at Aberystwyth. For the planar channel

flow of polymer solutions described in chapter 6, an existing code has been extended

to solve transient problems. All other results have been generated using a newly

developed code, the cornerstones of which are based on the iterative methods used in

the existing code. Iterative solvers provide the possibility of tackling large problems,

since they do not claim much memory associated to the storage of discrete spectral

element operators. For the purpose of creating geometries and meshes, the possibility

to use Gambit is included. Gambit is meshing software included in the commercial

fluid dynamics code Fluent. Since this is combined with an iterative solver, the new

code provides great geometric flexibility. It also provides the possibility of easily

incorporating other constitutive models, as long as similar non-dimensionalization is

possible. All codes have been implemented in Fortran language on Unix platforms.

The new code can also be compiled using the GNU Fortran compiler ’g77’, which

is available freely and can easily be used on Windows platforms as well as Linux

platforms.

1.8 Contents of the Thesis

The contents of this thesis are as follows. In chapter 2 the continuous equations in

the models that are used in this work are derived. The non-dimensionalization of
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the equations is given and a generic model presented. Some theoretical issues as-

sociated with constitutive models for viscoelastic fluids are analyzed and discussed

as well. The different temporal discretization schemes are given in chapter 3 to-

gether with the spatial discretization using the spectral element method. Before the

fully discretized equations are given for both a coupled and an uncoupled system of

equations, a test function is presented that gets round the problem of a zero radial

coordinate associated with the axis of symmetry in problems defined in cylindrical

polar coordinates. Details of the numerical algorithm that solves the discretized equa-

tions are given in chapter 4. This involves presenting the operators that need to be

inverted, the iterative methods that are used for this inversion and the precondition-

ers that are used to speed up the inversion. Also described in this chapter are the

Schur complement method, the zero volume of pressure condition that can be used

to achieve better conditioning of the Uzawa operator, and the upwinding technique

LUST. Results have been generated for the flow of Newtonian fluids and these are

presented in chapter 5. Simulations of the flow of polymer solutions, modelled by

the UCM and Oldroyd B models, are shown in chapter 6. Although the flow past

a cylinder is considered, most of this chapter involves the Poiseulle flow through a

planar channel. The efficiency of the preconditioners is also tested on the channel

flow problem. Chapter 7 describes the results obtained by solving the XPP model.

Both planar channel flow and flow past a cylinder are dealt with. The findings and

results presented in the last two chapters have been published in papers [60] and [59]

and another paper is currently in preparation.
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Chapter 2

Modelling Viscoelastic Fluids

2.1 Introduction

In order to be able to analyze the flow of any medium, mathematical statements are

needed that ’pin down’ the mediums behaviour. These mathematical equations can

be formulated using the following three physical principles:

• Mass cannot be created or destroyed. This will lead to the ’conservation of

mass’ equation.

• Newton’s second law that states F = ma (force is mass times acceleration).

This will yield the ’conservation of momentum’ equation.

• Energy cannot be created or destroyed. From this principle the ’conservation

of energy’ equation can be derived.

The conservation of mass and momentum equations are known as the field equations,

which in their most general form, are valid for any medium. Section 2.2 presents

the field equations, and also explains why the energy equation can be disregarded

in the framework in this thesis. The field equations are not a closed system, and

that means that extra descriptions of the medium are necessary to find independent
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solutions to flow problems. A relation between applied deformation on a medium,

and the stresses that this causes in the medium, provides that extra description.

The mathematical statement that expresses it is called the constitutive equation.

Unlike the field equations, the constitutive equation is medium-dependent. When this

equation is coupled to the field equations, a closed form description of the medium is

retrieved. In section 2.3, the constitutive models that will be used in this thesis are

derived and explained, and are presented in their non-dimensional form in section

2.4. Some mathematical properties of these constitutive model will be explored in

more depth in section 2.5.

2.2 The Field Equations

The derivation of the equations that satisfy the conservation of mass and momentum

is given in Appendix A. All derivations are made under the assumption that the

continuum hypothesis is valid. This means that the length scale of an infinitesimal

element, which is used to integrate over volumes and surfaces, is still considerably

larger than the largest molecular length scale. Therefore there is no need to worry

about features that appear on molecular scale of the medium. The equation for the

conservation of energy is briefly visited, but only to explain why it can be disregarded

in the framework of this thesis.

2.2.1 Conservation of mass equation

The conservation of mass equation is the mathematical statement of the physical

property of flow that no mass can be created or destroyed. It is also often referred to

as the continuity equation. In its differential form the conservation of mass equation

reads

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)
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where ρ is the density of the medium, and u is the velocity vector. In this thesis

the medium is always a fluid. Since compressibility in fluids is negligible, the density

does not change with time or space. The conservation of mass equation reduces to

∇ · u = 0. (2.2)

This reduced conservation of mass equation is often referred to as the incompress-

ibility constraint or the divergence-free condition. In a two dimensional Cartesian

coordinate system, the equation in component form reads

∂u

∂x
+

∂v

∂y
= 0. (2.3)

2.2.2 Conservation of momentum equation

The conservation of momentum equation is based on Newton’s second law F = ma,

where the force F can be split into body forces (fb) and surface force. Gravity is an

example of a body force. The surface forces consists of a force due to pressure p,

and a force due to viscous and elastic stresses. The viscous and elastic stresses are

contained in the symmetric extra-stress tensor denoted by T. In its differential form,

the conservation of momentum equation reads

∂(ρu)

∂t
+ ρu · (∇u)T = ∇ · σ + fb, (2.4)

where the total stress tensor σ is related to the pressure and extra-stress tensor T

through σ = −pI + T. The convective term is written by one half of the world as

u · (∇u)T , but by the other half as u · ∇u. In this thesis we will use u ·∇u, although

the velocity gradient is defined as

∇u =









∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y









, (2.5)
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which can be written in Einstein notation as u · ∇u = ui
∂uj

∂xi
. So equation (2.4) will

from here on be written as

∂(ρu)

∂t
+ ρu · ∇u = ∇ · σ + fb, (2.6)

For incompressible flow, the momentum equation reads

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · T + fb. (2.7)

In a two dimensional Cartesian coordinate system, and in the absence of body forces,

this is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

∂Txx

∂x
+

∂Txy

∂y
, (2.8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

∂Txy

∂x
+

∂Tyy

∂y
, (2.9)

2.2.3 Conservation of energy equation

When compressible media or temperature dependent problems are analyzed, the den-

sity and temperature are dependent variables. Together with thermodynamic equa-

tions of state, the energy equation then provides a relation between the density, the

internal energy, and the temperature of the medium. Since this thesis only deals with

incompressible fluids, under isothermal conditions, the energy equation need not be

used.

2.3 The Constitutive Equation

As is shown above, in a two dimensional Cartesian coordinate system, there are three

field equations, but six unknowns; pressure, two velocity components, and three in-

dependent extra-stress components. Apparently, a closure is needed to be able to

solve the equations. This closure is called the constitutive equation, and it provides

information about the stresses in the fluid.
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The available constitutive models can be divided into two groups, the integral and

the differential constitutive models. Integral models are highly accurate, but com-

putationally expensive since the whole history of deformation has to be stored. A

well-known example of an integral model is the K-BKZ model (Kaye - Bernstein,

Kearsley and Zappas) [28], [2]. For some differential models it is possible to find an

integral equivalent. In this research, only differential constitutive models are used.

Since they move forward in time, there is no need for storing deformation history.

This means that they are well-suited for use in numerical problems. Another advan-

tage is that they can be used for calculating flow through complex geometries.

Constitutive equations can be derived in a number of possible ways. The approach

that leads to classical models such as the UCM (Upper Convected Maxwell), the

Oldroyd B and the PTT (Phan-Thien-Tanner) model [44] is based on a macroscopic

definition of the fluid. For the UCM and Oldroyd B model this means that the be-

haviour of the fluid is modelled by a system of springs and dashpots, as is shown

later in this section. The PTT model is derived from network theory. The polymer

strands form a network of chains connection by junctions. The junctions allow for

destruction and creation of the chains in the network. They are also allowed to slip,

and to move with the fluid. The advantage of the PTT model over the Oldroyd B

model is that it can predict shear thinning. The well known Giesekus model [20]

contains a feature that makes it able to predict a second normal stress difference,

which also lacks from the Oldroyd B model. These constitutive models are mathe-

matical descriptions of the relation between the rate of deformation, or strain rate,

that a fluid undergoes, and the resulting stresses that occur in the fluid. A derivation

of the rate of deformation can be found in Appendix . In a planar flow the rate of
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deformation tensor d reads

d =







dxx dxy

dxy dyy






=









∂u

∂x

1

2
(
∂u

∂y
+

∂v

∂x
)

1

2
(
∂u

∂y
+

∂v

∂x
)

∂v

∂y









=
1

2

(

∇u + (∇u)T
)

. (2.10)

The constitutive equation relates the three components of the extra-stress tensor to

this deformation tensor, and thus provides three independent equations, completing

the set of equations that is needed to describe fluid flow.

Other possibilities for deriving constitutive models are microscopic and mesoscopic

approaches. The actual dynamics of the polymer are now modelled on a molecular

level, and the macroscopic stress in then related to microscopic quantities such as

orientation and stretch of the molecules, which is the case in the pom-pom model

[34]. An example of a mesoscopic model is the FENE (Finitely Extensible Non-linear

Elastic) model, which is derived from kinetic theory models. In the FENE model,

two dumbbells connected by a spring model the dynamics of polymer chains. This

leads to an expression for a configuration tensor at the microscopic level, from which

the macroscopic stress can be computed.

The modelling of solutions of polymer strands in a resin, and melts of polymer is

quite different. In some models the assumption is made that polymer strands do not

interfere with each others dynamics. These models can be used to model solutions

of polymer in a Newtonian solvent, i.e. a polymer solution. In the pom-pom model

the behaviour of the individual strands do influence the surrounding strands, and

therefore it is suitable to model polymer melts. For this reason, the remainder of this

section and also the last three chapters of this thesis are divided into separate parts

for Newtonian fluids, polymer solutions and polymer melts.
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2.3.1 Newtonian fluids

In his Principia [37], Newton wrote that ’the resistance which arises from the lack

of slipperiness of the parts of the fluid, other things being equal, is proportional to

the velocity with which the parts of the fluid are separated from one another’. Today

this statement is interpreted as the shear stress is linearly dependent on the rate of

deformation of the fluid. In a very general form, this linear Newtonian stress relation

can be written as

T = 2ηd, (2.11)

in which η is the viscosity of the fluid, which is considered to be constant. Fluids

that obey this linear dependency are called Newtonian fluids.

The relation (2.11) between stress and strain in a Newtonian fluid can be modelled by

a simple dashpot, see Fig. 2.1. The time rate of change of the displacement, ∂γ/∂t,

of a dashpot is related to an applied force F through

∂γ

∂t
=

F

η
. (2.12)

Fη

Figure 2.1: A single dashpot as a model for a Newtonian fluid.

In relation to the previous introduction to constitutive equations, the force F should

be regarded as the stress in the fluid, and the rate of change of displacement as the

rate of strain, or rate of deformation. The tensorial equivalent of the one dimensional
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equation (2.12) that the dashpot satisfies can now be written as

T = 2ηd, (2.13)

which is the Newtonian stress relation.

If the Newtonian stress relation (2.11) is substituted into the momentum equation

(2.7) in absence of body forces, the Navier-Stokes equations can be rewritten as

ρ

(

∂u

∂t
+ u · (∇u)

)

= −∇p + η∆u. (2.14)

When the flow is considered to be creeping, the left-hand side of this equation is zero.

The equation is then called the Stokes equation. Both the Stokes and the Navier-

Stokes equations can be formulated in terms of either a two or a three field problem.

The three field Stokes problem for example, is given by

∇ · u = 0, (2.15)

∇p = ∇ · T, (2.16)

T = 2ηd, (2.17)

whereas the two field Stokes problem is defined by

∇ · u = 0, (2.18)

∇p = η∆u. (2.19)

2.3.2 Polymer solutions

In this thesis only Maxwell and Oldroyd models will be used to predict flow of polymer

solutions. A derivation of these models is given in this section. The equations for the

PTT and Giesekus model are also presented.
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The UCM model

In chapter 1 it is explained that a viscoelastic fluid has characteristics of both fluids

and solids. From this point of view it makes sense to model a viscoelastic material

with a dashpot that models a viscous fluid, and a spring that models the elastic, solid-

like behaviour. The Maxwell element (Fig. 2.2), in which a spring and a dashpot

are connected in series, does just that. The dashpot, as shown before, obeys the

Newtonian law for viscosity, and the spring obeys Hooke’s law for solids.

F
η

k

Figure 2.2: The Maxwell element: a spring-dashpot model of a Maxwell fluid.

The spring constant k is defined as the ratio of force over the displacement in a spring.

Similar to the Newtonian case, the time rate of change of the total displacement can

be expressed as a function of the forces in the spring and the dashpot. The same

philosophy as in [26] is followed here. If the subscript 1 refers to the spring, and the

subscript 2 to the dashpot, the rate of total displacement is

∂γ

∂t
=

∂γ1

∂t
+

∂γ2

∂t
=

∂

∂t

(

F1

k

)

+
F2

η
. (2.20)

Since the spring and the dashpot are in series, the forces F1 and F2 are the same and

equal F , so (2.20) reduces to

∂γ

∂t
=

1

k

∂F

∂t
+

F

η
, (2.21)

and, with the introduction of the relaxation time λ1 = η/k, we have

F + λ1
∂F

∂t
= η

∂γ

∂t
. (2.22)

26



Again, the force F should be regarded as the stress in the fluid, and the rate of

displacement ∂γ/∂t, as the rate of deformation. The tensorial equivalent of the

equation is then found to be

T + λ1
∂T

∂t
= 2ηd. (2.23)

The time derivative in this equation however, is not indifferent to changes of reference

frames. The Eulerian time derivative ∂/∂t is therefore replaced by an invariant

derivative. The invariant derivative of a tensor f can be written in a general form as

δf

δt
=

Df

Dt
− g · f − f · gT , (2.24)

where D/Dt is the material derivative, given by

D

Dt
=

∂

∂t
+ u · ∇, (2.25)

and g is defined as

g = (1 − a

2
)∇u − a

2
(∇u)T . (2.26)

The upper-convected derivative is the special case of δf/δt with a = 0, and is given

by
∇

f =
Df

Dt
−∇u · f − f · (∇u)T . (2.27)

The terms ∇u · f + f · (∇u)T are often referred to as the deformation terms. The

special cases of δf/δt with a = 2 and a = 1, are called the lower-convected derivative

and the corotational derivative, respectively. In calculations involving viscoelastic

fluids however, the upper-convected derivative is most frequently used, since it is the

only derivative to produce physically relevant results for normal stress differences, as

will be shown in section 2.5.3.

The UCM model is now given by (2.23), with the time derivative ∂/∂t replaced by

the upper-convected derivative,

T + λ1

∇

T = 2ηd. (2.28)
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The upper-convected derivate of the stress tensor T is given by

∇

T =
∂T

∂t
+ u · ∇T −∇u ·T − T · (∇u)T . (2.29)

The UCM model is mathematically the simplest differential model that is available

for description of the behaviour of viscoelastic models. However, it is also the hard-

est model to deal with numerically, because of its highly hyperbolic and nonlinear

character. Together with the field equations, the UCM model is of mixed hyper-

bolic/elliptic type. At high Weissenberg numbers, the nonlinear upper-convected

derivative becomes dominant. Although it is not within the scope of this thesis, the

author believes that efficiently solving the UCM model is one of the main issues that

remains open in computational rheology, since the model can be seen as a basis to

which most other differential equations are extensions.

The Oldroyd model

In the Oldroyd B model, an extra term in the momentum equation adds Newtonian

viscosity to the system. This overcomes part of the stability problems when trying

to solve the UCM model.

F

η2

k

η1

Figure 2.3: The Jeffreys model: a spring-dashpot model of an Oldroyd fluid.

The Oldroyd B model is given by

T + λ1

∇

T = 2η(d + λ2

∇

d). (2.30)
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The retardation time λ2 may be seen as a measure for the time the material needs

to respond to deformation. The extra-stress tensor can be split into a polymeric

contribution τ and a viscous contribution τ s,

T = τ + τ s = τ + 2ηsd. (2.31)

The viscosity η is also a sum of its polymeric contribution ηp and its viscous contri-

bution ηs, also called the solvent viscosity. The retardation and relaxation times, and

the viscosity contributions are related through

λ2

λ1
=

ηs

ηp + ηs
. (2.32)

The equations can now be rewritten in terms of the polymeric contribution to the

extra-stress tensor. The conservation of mass and momentum, and the constitutive

equation now read

∇ · u = 0, (2.33)

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · τ 1 + ηs∇2u, (2.34)

τ + λ1
∇

τ = 2ηpd. (2.35)

The Oldroyd B model reduces to the UCM model if λ2 or equivalently ηs is zero.

Both models predict a positive first normal stress difference and a zero second normal

stress difference, which is in qualitative agreement with experimental data, in which

first and second normal stress differences are found to be of opposite sign, with the

first normal stress difference being an order of magnitude larger. Both models may,

however, predict unbounded stress growth, as a result of the possibility of generating

infinite extensional viscosity. This is, of course, an undesirable property. Moreover,

they do not describe shear thinning of the fluid, so they may give a poor representation

of a real fluid.
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Other macroscopic models

The UCM and the Oldroyd B models are the only macroscopic models that will be

used in this thesis. The PTT [44] and Giesekus [20] models will be mentioned here

though, because they help to shed light on the later mentioned pom-pom model. The

PTT model is given by

f(λ, τ )τ + λ1
�

τ = 2ηpd, (2.36)

where the derivative
�

τ is related to the upper-convected derivative through

�

τ =
∇

τ + ξ(d · τ + τ · d). (2.37)

The parameter ξ is called the slip parameter. The PTT model can be expressed

both as a linear model and as an exponential model, depending on the shape of the

function f(λ, τ ). In the linear model it has the form

f(λ1, τ ) = 1 +
ελ1

ηp
Iτ , (2.38)

and in the exponential PTT model it is of the form

f(λ1, τ ) = exp

(

ελ1

ηp
Iτ

)

. (2.39)

The parameter ε is the shear thinning parameter, and it ensures that the stress growth

is bounded. The parameter is usually determined by fitting of shear viscosity curves

to experimental data.

The Giesekus model is given by

τ + λ1
∇

τ +
αλ1

ηp

τ · τ = 2ηpd, (2.40)

in which the term involving τ · τ introduces a second normal stress difference, the

magnitude of which can be controlled by the material parameter α that can be de-

termined by fitting to rheological data.

30



2.3.3 Polymer melts

As mentioned before, the modelling of polymer melts should take into account the

interaction between individual molecules. Here it will be shown how the pom-pom

model can be derived from the description of the dynamics of a melt at the molecular

level. The derivation follows the approach used in [22]. The eXtended Pom-Pom

(XPP) model [61] is based on the pom-pom model, and will also be described in

this section. The philosophy behind microscopic models like these is that although

it may be fine to consider the fluid as a continuum, the stress is are related to the

configuration of the fluid at the molecular level. This approach leads to the following

derivation of a constitutive equation.

Consider a polymer melt and a model for an average polymer molecule as a chain with

N links of length b, and a certain molecular weight Mc. The molecule is described

by an end-to-end vector R. Note that the ensemble average of the end-to-end vector

is < R >= 0. Fig. 2.4 shows a volume V , in which one molecule is highlighted. The

k
j

i

R

Rk

Rj

Ri

L

L
L

Figure 2.4: A single molecule highlighted in a volume V = L3.

contribution to the stress-component σij of the force f that is present in this single

molecule, equals the stress that is exerted by the force in the molecule in direction i,
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fi/L
2, multiplied by the probability that the molecule cuts the j-plane of the volume

V , Rj/L. Since the total number of molecules in the volume equals L3ρ/Mc, the

stress σij can be expressed as

σij =
fi

L2

Rj

L

ρ

Mc
L3NA =

ρNA

Mc
< Rjfi >, (2.41)

where NA is Avogadro’s number.

The force f in a molecule is the force that tries to restore the molecule into its

equilibrium configuration in which the end-to-end vector scales as N 1/2b. For small

departures from this equilibrium, the force obeys Hooke’s law and can be found to

be

f =
3kT

Nb2
R, (2.42)

where k is Boltzmann’s constant and T is the absolute temperature. With the gas

constant R defined as R = NAk, the expression for the stress can be found by

combining (2.41) and (2.42),

σ =
ρRT

Mc
< 3

RR

Nb2
> . (2.43)

When a step strain is applied to the fluid, the molecules instantaneously stretch, and

then relax with a relaxation time equal to the so-called Rouse time τR. The Rouse

time follows from the diffusivity law which states that the time of diffusion scales as

the diffusion length squared over the diffusion coefficient D,

τR ∼ Nb2

2D
, (2.44)

where D follows from Einsteins relation

D =
kT

Nζ
, (2.45)

in which ζ is a friction coefficient. The Rouse time can now be written as

τR ∼ N2b2ζ

2kT
. (2.46)
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The tube model

The derivation of the expression for the stress has not taken into account the influ-

ence of the surrounding fluid on the movement of the molecule. By neglecting this,

the fluid can be physically interpreted not as a polymer melt, but as a solution of

short molecules instead. When the molecular weight of the polymer is larger than

some value Me, the interactions with neighbouring molecules cannot be neglected any

longer, and we are speaking of a polymer melt that is entangled. From this philoso-

phy, de Gennes [9] and Doi and Edwards [11] developed the tube model for polymer

melts of linear molecules. Such a melt would represent a High Density Poly-Ethylene

(HDPE), for example. The idea is that the lateral movement of a polymer molecule

is restricted by the surrounding molecules. An imaginary tube is then thought to

surround the molecule (Fig. 2.5), through which the molecule is allowed to reptate,

i.e. move into and out of the tube.

a

Figure 2.5: The tube model.

Since each part of the polymer molecule in Fig. 2.5 that is smaller than the entangle-

ment molecular weight Me will behave as an unentangled chain described before, the

molecule is thought of as s = M/Me such unentangled segments. All these segments

are characterized with an end-to-end vector equal to the diameter a which scales as

N
1/2
e b, where Ne is the number of links in one segment, i.e. Ne = N/s. Equivalent to
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the Rouse time, the relaxation time of each of the unentangled segments is

τe ∼
a2

2D
∼ Neb

2Neζ

2kT
∼ N2

e b2ζ

2kT
. (2.47)

Relaxation of the molecule in this tube model, however, is essentially different from

the relaxation of the unentangled polymer. After the molecule is stretched with a

step strain, the molecule first relaxes back into the tube to its original length s · a.

This relaxation happens in the Rouse time. Due to the restriction in the lateral

movement, however, the molecule is not relaxed yet and tries to achieve relaxation

by reptating, or diffusing, out of the tube. Again, the time this diffusion takes can

be calculated with the diffusivity law

τrep ∼ (sa)2

2D
∼ s2a2Nζ

2kT
∼ s2Neb

2sNeζ

2kT
∼ s3N2

e b2ζ

2kT
∼ s3τe. (2.48)

Note that without entanglement, the Rouse time of the polymer is τR ∼ s2τe.

The stress in a segment of the molecule with mass Me can now be found following

the same philosophy as before. The stress is written as

σ = G0S, (2.49)

where G0 = ρRT/Me is the plateau modulus, and S is a tensor giving the orientation

of the tube segments,

S =
< RR >

a2/3
. (2.50)

The orientation tensor S can also be expressed by the integral

∫ t

−∞

dt′

τrep
e
−

t−t′

τrep Q(t′, t), (2.51)

where Q(t′, t) is the orientatien tensor at time t, formed from an isotropic distribution

of tube segments at time t′, with t > t′.
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The pom-pom molecule

When the molecule in Fig. 2.5 is provided with a number of arms, q, the pom-pom

molecule is obtained. The pom-pom molecule in Fig. 2.6, for example, has q = 3.

Figure 2.6: The pom-pom molecule.

Equivalent to the number of entanglements s = sb in the backbone, the number of

entanglements in each of the arms is sa = Ma/Me, with Ma the molecular weight

of the arm. At the two branch points, the molecule is effectively ’pinned down’.

Reptation of the backbone is therefore only possible after the arms have diffused.

This time of diffusion, τa, of the arms increases exponentially with the length of the

arms,

τa ∼ τee
sa. (2.52)

In this time τa, the branchpoint is allowed to diffuse a length a and then the process of

arm diffusion starts again (picture the image of a molecule consisting of a backbone

with diffuse ’blobs’ at both ends, and the name pom-pom suddenly makes sense).

The Einstein relation for the branchpoint can now be written as

τaq ∼ a2

2Dbp
, (2.53)

where the factor q reflects the fact that all arms have to diffuse before branchpoint

reptation. The relaxation time of the backbone is given by

τb ∼
s2

ba
2

2Dbp
∼ s2

ba
2τaq

2a2
∼ s2

b2τaq

2
∼ s2

bqe
saτe, (2.54)
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This expression needs some correction due to differences in one- and three-dimensional

diffusion coefficients and due to tube-diameter growth in the presence of arms, since

the arms of neighbouring molecules do not impose the same strict constraint on

lateral movement as the presence of a backbone of a neighbouring molecule. This

’dynamic dilution’ makes the tube wider by a factor φα, where α = 1 or 4
3
, and

φ = Mb/(2qMa + Mb), where Mb is the molecular weight of the backbone. The

correct definition of the relaxation time of the backbone orientation is therefore given

by

τb =
24φ2α

π2
qs2

bτa, (2.55)

On the basis of the backbone relaxation time τb, the integral expression for the ori-

entation tensor S can be defined again as

∫ t

−∞

dt′

τb
e
−

t−t′

τb Q(t′, t). (2.56)

As mentioned before, integral models like these are very hard to deal with compu-

tationally, and therefore a differential approximation was sought for by McLeish and

Larson [34]. This approximation is given by

S =
A

IA

, (2.57)

where IA is the trace of the tensor A, which obeys the Maxwell model

A + τb

∇

A = I/3. (2.58)

The arms that are present in the pom-pom molecule are affected by friction from

the surrounding fluid. This drag force on the branch points causes the backbone to

stretch, a feature that is not present in the Doi-Edwards model. Equivalent to (2.42),

the tension in the backbone, characterized by the position vectors of the branch points

x1 and x2, is given by

fb =
3kT

sba2
(x2 − x1) =

3kT

a
λn̂, (2.59)
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where n̂ is the unit vector parallel to the backbone tube, and λ =
|x2 − x1|

sba
is the

stretch of the backbone, which is the length after the stretch, relative to the length in

equilibrium. The equilibrium force in the chain of 3kT/a needs to be subtracted from

this, and then the force acting on both branch points obeys the following balances

ζbp(
Dx1

Dt
− u1) =

3kT

a
(λ − 1)n̂, (2.60)

ζbp(
Dx2

Dt
− u2) = −3kT

a
(λ − 1)n̂, (2.61)

where u1 and u2 are the velocities of the fluid at the branch points. Subtracting the

force balances yields

ζbp(
Dλ

Dt
sba − λsbaS : ∇u) = −6kT

a
(λ − 1), (2.62)

where λsbaS : ∇u replaces u2 − u1, and follows from a Taylor series approximation

on the ensemble averaged tube orientation. The stretch equation can now be written

as

Dλ

Dt
= λS : ∇u − λ − 1

τs
, (2.63)

where the relaxation time of the stretch is given by

τs =
sba

2ζbp

6kT
. (2.64)

The friction coefficient of the branchpoint can be found through Einstein’s relation

(2.53),

ζbp =
kT

Dbp
= kT

2qτa

a2
, (2.65)

and with the correction factor, the stretch relaxation time is defined by

τs = 2φαqsbτa. (2.66)

The relative magnitude of the backbone relaxation time (2.55) to this stretch relax-

ation time is of the order 12
π2 φ

αsb ∼ sb. This value is typically between 2 and 5 for
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branched polymers. High values correspond to molecules with relatively long back-

bones, whereas low values correspond to melts where the dynamic dilution is high

and backbones are only slightly entangled.

When the stretch becomes too large, the arms will retract into the backbone-tube.

This happens when the tension in the backbone λ · 3kT
a

exceeds the tensions q · 3kT
a

in the arms. The value of the stretch can therefore not exceed the number of arms

of the pom-pom molecule, λ ≤ q.

The expression for the stress also changes as a result of the stretch of the molecule.

The equilibrium length a = N
1/2
e b after stretch changes to λa = N

1/2
e b, and the stress

changes from σ = G0S to

σ = 3G0λ
2S. (2.67)

The factor 3 is incorporated to recover the correct linear viscoelastic behaviour.

The original pom-pom model

As is shown above, the differential form of the pom-pom model [34] is given by an

equation for the orientation tensor of the backbone and an equation for the stretch

of the molecule,

A + τb

∇

A = I/3, (2.68)

Dλ

Dt
= λ

A : ∇u

IA

− λ − 1

τs
, λ ≤ q. (2.69)

The stress can then be calculated from

σ = 3G0λ
2 A

IA

= 3G0λ
2S. (2.70)

The main drawback of this model is that at the point when λ = q, a discontinuity

is present in the extensional viscosity, as will be shown in section 2.5. This can
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be overcome by not fixing the branch points, but by allowing them to move freely

at distances shorter than a. Blackwell et al. [4] have shown that this results in a

modification of the stretch relaxation time from τs to τse
−ν(λ−1). The stress equation

now becomes

Dλ

Dt
= λ

A : ∇u

IA

− λ − 1

τs
eν(λ−1), λ ≤ q, (2.71)

where the value of ν is found to be inversely proportional to q by fitting the model

to shear-viscosity data. A commonly used value is ν = 2/q.

As is mentioned in chapter 1, numerical studies by Bisko [3] and Inkson et al. [25] us-

ing the the pom-pom model have shown good agreement with a range of experiments

for LDPE melts.

The extended pom-pom model

Based on the pom-pom model of McLeish and Larson [34], Verbeeten et al. [61]

developed the eXtended Pom-Pom (XPP) model. The extensions overcome a few

problems with the original pom-pom model. First, the original model predicts a zero

second normal stress difference. Secondly, there is an unphysical discontinuity in the

gradient of the extensional viscosity when the stretch is equal to q at steady state.

Thirdly, the shear stress has a maximum.

In the eXtended Pom-Pom (XPP) model, two of these problems are circumvented.

A modification to the stretch equation, as introduced by Blackwell [4], which allows

for branch point displacement, is used to overcome the discontinuity in the gradi-

ent of the extensional viscosity. The retraction of the arms into the tube has been

neglected, and thereby the constraint that the stretch cannot be larger than the

number of arms is removed. A Giesekus-like term has been added to the orienta-

tion equation, to introduce a non-zero second normal stress difference. Furthermore,
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the orientation equation is bounded for high strain rates. To get around the prob-

lem of the maximum in the shear stress that is inherent to the original pom-pom

model, so called convective constraint release (CCR) [35] can be introduced. This is,

however, not incorporated in the XPP model, and will not be dealt with in this thesis.

The evolution equations for the orientation tensor s, and the backbone stretch λ, for

the eXtended Pom-Pom (XPP) model of Verbeeten et al. [61] are given by

∇

s +f(λ, s,u)s +
α − 1

3λ2λ0b
I +

3αλ2

λ0b
s · s = 0, (2.72)

and

∂λ

∂t
+ u · ∇λ = λ(d : s) − (λ − 1)

λ0s

eν(λ−1), (2.73)

respectively, where the function f(λ, s,u) is given by

f(λ, s,u) = 2d : s +
1

λ2λ0b

(1 − α − 3αλ4Is·s). (2.74)

In these equations λ0b and λ0s are the relaxation times of orientation and the stretch

of the backbone, respectively. The evolution equation of the orientation tensor incor-

porates features of the Giesekus model, and for α 6= 0 a nonzero second normal stress

difference is predicted. The parameter ν is incorporated to remove the discontinuity

from the gradient of the extensional viscosity. Its value is obtained by data fitting

and is found to be inversely proportional to the number of arms q, viz.

ν =
2

q
. (2.75)

Finally, the extra-stress tensor can be derived from the orientation tensor through

the following relation

τ = G0(3λ
2s − I). (2.76)

Note that the orientation tensor exhibits a nonzero third normal stress component,

even in 2D problems. The equation for this component may be eliminated from the
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system of equations since it is known that the trace of the orientation tensor, Is, is

unity.

Equations (2.72) - (2.74) are collectively known as the double equation version of the

XPP model. Equation (2.72) may be reformulated (see Appendix C) in terms of the

extra-stress tensor rather than in terms of the orientation tensor. This yields the

constitutive equation for the single equation version of the XPP model. It relates the

polymeric stress to the rate of deformation tensor d through

f(λ, τ )τ + λ0b
∇

τ +G0(f(λ, τ ) − 1)I +
α

G0

τ · τ = 2λ0bG0d, (2.77)

in which the function f(λ, τ ) is given by

f(λ, τ ) = 2
λ0b

λ0s
eν(λ−1)

(

1 − 1

λ

)

+
1

λ2

[

1 − αIτ ·τ

3G2
0

]

. (2.78)

In the single equation version, the backbone stretch λ is directly coupled to the

extra-stress by taking the trace of (2.76). This yields the relation

λ =

√

1 +
Iτ

3G0
. (2.79)

Multimode pom-pom models

Molecules in a real polymer melt are not as simple as the pom-pom molecule depicted

in Fig. 2.6. Often they consist of multiple connected backbone segments. An ap-

proximation of the relaxation of such complex molecules is achieved by considering

it as a number of pom-pom molecules. Similar to the relaxation of a single pom-pom

molecule, the complex molecule also relaxes from the outside inwards. In the single

pom-pom molecule this is separated into relaxation of the arms, followed by relax-

ation of the backbone. In the complex molecule, separate pom-pom molecules need

to model each of the equivalent relaxation levels. The total polymeric stress for the

fluid consisting of complex molecules, is then found by adding the contributions of
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the stresses of the separate pom-pom molecules, i.e.

τ =

M
∑

i=1

τ i, (2.80)

where M is the number of modes, or separate pom-pom molecules. The stress contri-

butions τ i are found from the same constitutive equations as for single-mode models,

but every mode has its own stretch λi and is characterized by its own set of material

parameters.

2.4 Non-dimensional Equations

In this thesis all equations are used in non-dimensional form. All lengths will be

non-dimensionalized with a length scale L, velocity with U , times with U/L, pressure

and stress with L/(ηU),

x∗ =
x

L
, u∗ =

u

U
, t∗ =

Ut

L
, p∗ =

Lp

ηU
, τ ∗ =

Lτ

ηU
.

As mentioned before, the viscosity η is the sum of its polymeric contribution ηp, and

its viscous contribution ηs. The Reynolds number, Re, the Weissenberg number, We,

and the viscosity ratio parameter β are defined by

Re =
ρUL

η
, We =

λ1U

L
, β =

λ2

λ1
=

ηs

ηp + ηs
. (2.81)

The constitutive equations for the XPP model are made dimensionless by suitably

modifying the non-dimensionalization used for the Oldroyd B model. The motivation

for doing this is to create a generic algorithm that can be used to simulate a large

class of constitutive models. The polymeric viscosity ηp is defined in terms of the

linear relaxation modulus G0, which in turn can be defined as a viscosity divided by

a timescale. This timescale is chosen to be λ0b, so η can now be broken up into

η = ηs + ηp = ηs + G0λ0b. (2.82)
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In this way the Weissenberg number and the parameter β become

We =
λ0bU

L
, β =

ηs

ηs + G0λ0b
. (2.83)

This non-dimensionalization of the equations for the XPP model ensures that the

conservation equations are the same for the XPP model as for the UCM and Oldroyd

B models. One more non-dimensional material parameter needs to be introduced for

the pom-pom model. This is the parameter ε, which is defined as the ratio of the two

relaxation times that characterize the pom-pom molecule,

ε =
λ0s

λ0b
. (2.84)

In a multimode model the material parameters αi and νi = 2/qi are allowed to be

different for every mode i. The nondimensional parameters become

Wei =
λ0b,iU

L
, β =

ηs

ηs + ηp
=

ηs

ηs +
∑M

i=1 ηp,i

, εi =
λ0s,i

λ0b,i
, (2.85)

where M is the total number of modes, and the modal polymeric viscosities are

ηp,i = G0,iλ0b,i. An extra viscosity ratio β̃ is now defined for every mode as

β̃i =
ηp,i

ηp
. (2.86)

2.4.1 The Navier-Stokes equations

The non-dimensional Navier-Stokes equations in the three field formulation are given

by

∇ · u = 0, (2.87)

Re

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · τ , (2.88)

τ = 2d, (2.89)
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and after substituting the constitutive equation into the momentum equation, the

non-dimensional two field formulation is

∇ · u = 0, (2.90)

Re

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇2u. (2.91)

In this thesis the Stokes equations will be used in a two dimensional Cartesian coor-

dinate system with components (x, y), and in a cylindrical polar coordinate system

with components (z, r, θ). Problems defined in the first system are refered to as ’pla-

nar’. There is no θ-dependence in the problems dealt with in this thesis. Therefore,

problems in the latter system are called ’axisymmetric’. The three field Stokes prob-

lem is written out in component form for both coordinate systems in Appendix B

(see Table B.1).

2.4.2 The UCM and Oldroyd B models

The system of non-dimensional equations for the Oldroyd B model is

∇ · u = 0, (2.92)

Re

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · τ + β∇2u, (2.93)

τ + We
∇

τ = 2(1 − β)d, (2.94)

which reduces to the UCM equations when β = 0.

2.4.3 The XPP model

The non-dimensional double equation variant of the XPP model is

f(λ, s,u)s + We
∇

s +
α − 1

3λ2
I + 3αλ2s · s = 0, (2.95)

where

f(λ, s,u) = 2Wed : s +
1

λ2
(1 − α − 3αλ4Is·s), (2.96)
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and the equation for the backbone stretch is

∂λ

∂t
+ u · ∇λ = λ(d : s) − (λ − 1)

εWe
eν(λ−1). (2.97)

The extra-stress tensor can be found using the relationship

τ =
(1 − β)

We
(3λ2s − I). (2.98)

The non-dimensional single equation variant of the XPP model is given by

f(λ, τ )τ + We
∇

τ +
1 − β

We
[f(λ, τ ) − 1] I +

αWe

1 − β
τ · τ = 2(1 − β)d, (2.99)

where f(λ, τ ), and λ are given by

f(λ, τ ) =
2

ε

(

1 − 1

λ

)

eν(λ−1) +
1

λ2

[

1 −
(

We

(1 − β)

)2
α

3
Iτ ·τ

]

, (2.100)

and

λ =

√

1 +
We

(1 − β)

1

3
Iτ . (2.101)

The stress for the multimode version of the single equation variant of the XPP model

is given by

τ =
M
∑

i=1

τ i, (2.102)

where the stresses τ i are governed by

f(λi, τ i)τ i + Wei
∇

τ i +
β̃i(1 − β)

Wei

[f(λi, τ i) − 1] I

+
αWei

β̃i(1 − β)
τ i · τ i = 2β̃i(1 − β)d,

(2.103)

where f(λi, τ i), and λi are given by

f(λi, τ i) =
2

εi

(

1 − 1

λi

)

eνi(λi−1) +
1

λ2
i

[

1 −
(

Wei

β̃i(1 − β)

)2
αi

3
Iτ i·τ i

]

, (2.104)

and

λi =

√

1 +
Wei

β̃i(1 − β)

1

3
Iτ i

. (2.105)
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2.4.4 Generic model

A generic model is now presented, on the basis of the XPP model. Both versions

of the XPP model are represented by just one constitutive equation, since they are

fully equivalent as shown in Appendix C. The only difference is that the stretch λ is

calculated differently in both models. The equations in the generic model read

∇ · u = 0, (2.106)

Re

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · τ + β∇2u, (2.107)

f(λ, τ )τ + We
∇

τ +(f(λ, τ ) − 1)
1 − β

We
I +

αWe

1 − β
τ · τ = 2(1 − β)d, (2.108)

where

f(λ, τ ) =
2

ε

(

1 − 1

λ

)

eν(λ−1) +
1

λ2
(1 − α

3

(

We

1 − β

)2

Iτ ·τ ). (2.109)

In Table 2.1 it is shown how λ needs to be calculated, and what value the different

parameters need to be set to, to retrieve from this generic model, the double equation

version of the XPP model, the single equation version the XPP model, the Oldroyd

B, the UCM, the Navier-Stokes and the Stokes models respectively.

In Appendix B the equations in the generic model, and the expressions for the stretch

λ in the double and single equation versions of the XPP model are given in two

dimensional Cartesian coordinates.

2.5 Theoretical Issues

In the previous sections a few references have been made to some theoretical issues

concerned with the constitutive models. Some of these issues will be presented in more

detail here. First some comments will be made on the stability of the equations that

have been presented. A study on the type of the equations will also be shown, and the
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Table 2.1: Calculation of the stretch λ, and the parameter settings for the different

models.

Model Calculation of backbone stretch λ and other parameters

double eq. XPP
∂λ

∂t
+ u · ∇λ =

We

3(1 − β)

1

λ
(d : τ ) − λ − 1

εWe
eν(λ−1) ν =

2

q

single eq. XPP λ =

√

1 +
We

(1 − β)

1

3
Iτ

Oldroyd B λ = 1 α = 0

UCM λ = 1 α = 0 β = 0

Navier-Stokes λ = 1 α = 0 β = 0 We = 0

Stokes λ = 1 α = 0 β = 0 We = 0 Re = 0

boundary condition settings that arise from these problems are given. The viscoelastic

effect of non-zero first and second normal stress differences that are predicted by the

models is presented. Finally, the prediction of shear and extensional viscosity by the

pom-pom models is given.

2.5.1 Well-posedness, existence, uniqueness and stability

According to Hadamard a deterministic solution to a set of equations is only possible

under three conditions. These conditions are that a solution exists, the solution is

unique, and that the solution is stable. The problem is called well-posed if it satisfies

all three criteria. For Newtonian fluids well-posedness has been proven for some

problems, and so numerical solutions can be sought for in the faith that they exist.

For the equations that govern the flow of viscoelastic fluids existence and uniqueness of

solutions have only been proven for some simple problems (see [47], for example) due

to their complicated non-linear form. Although this makes the search for numerical

solutions controversial from a mathematical viewpoint, a more pragmatic approach
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needs to be adopted and the field of computational rheology proceeds in the faith

that existence and uniqueness exist, but have not been proven yet. To be able to

make some comments on stability of the equations and on how boundary conditions

can be imposed to constitute a well-posed problem, the type of the equations that

are used in this thesis is analyzed in the next section.

2.5.2 Type of the equations

It is known that the type of the system of partial differential equations for the UCM

model is mixed elliptic/hyperbolic and that the corresponding system for the Oldroyd

B model is of mixed parabolic/elliptic/hyperbolic type (see [26]). The type of the

set of equations provides information on how to impose boundary conditions. To

determine the type of the system of governing equations for the XPP model, the

double equation version is written in the form

A0
∂φ

∂t
+ A1

∂φ

∂x
+ A2

∂φ

∂y
+ A3

(

∂2φ

∂x2
+

∂2φ

∂y2

)

+ Sφ = 0, (2.110)

with φ = (p, u, v, τxx, τyy, τzz, τxy, λ)T ≡ (p, u, v, σ, γ, µ, τ, λ)T and R and W are the

Reynolds and Weissenberg numbers, respectively, the matrices are given by

A0 =













































0 0 0 0 0 0 0 0

0 R 0 0 0 0 0 0

0 0 R 0 0 0 0 0

0 0 0 W 0 0 0 0

0 0 0 0 W 0 0 0

0 0 0 0 0 W 0 0

0 0 0 0 0 0 W 0

0 0 0 0 0 0 0 1













































, (2.111)
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A1 =













































0 1 0 0 0 0 0 0

1 Ru 0 −1 0 0 0 0

0 0 Ru 0 0 0 −1 0

0 −2m1 0 Wu 0 0 0 0

0 0 −2m3 0 Wu 0 0 0

0 0 0 0 0 Wu 0 0

0 0 −m1 0 0 0 Wu 0

0
−σ

3kλ

−τ

3kλ
0 0 0 0 u













































, (2.112)

A2 =













































0 0 1 0 0 0 0 0

0 Rv 0 −1 0 0 0 0

1 0 Rv 0 0 0 −1 0

0 −2m3 0 Wv 0 0 0 0

0 0 −2m2 0 Wv 0 0 0

0 0 0 0 0 Wv 0 0

0 −m2 0 0 0 0 Wv 0

0
−τ

3kλ

−γ

3kλ
0 0 0 0 v













































, (2.113)

A3 =













































0 0 0 0 0 0 0 0

0 −β 0 0 0 0 0 0

0 0 −β 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0













































, (2.114)
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S =













































0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 Sσ 0 0 0 0

0 0 0 0 Sγ 0 0 0

0 0 0 0 0 Sµ 0 0

0 0 0 0 0 0 Sτ 0

0 0 0 0 0 0 0 Sλ













































, (2.115)

where

l = 1 − β, k =
l

W
,

m1 = Wσ + l, m2 = Wγ + l, m3 = Wτ,

Sσ = f +
f − ε

σ
+

αε

k
(τ 2 + σ),

Sγ = f +
f − ε

γ
+

αε

k
(τ 2 + γ),

Sµ = f +
f − ε

µ
+

αε

k
(µ),

Sτ = f +
αε

k
(σ + γ),

f = 2(1 − 1

λ
)e

2
q
(λ−1) +

ε

λ2

(

1 − α

3k2
(σ2 + γ2 + µ2 + 2τ 2)

)

.

When a plane wave solution φ(x, t) = φ0e
−iωt+i(ξ1x+ξ2y) is inserted into (2.110), a

non-trivial solution φ can be found if

det
[

−ωA0 + ξ1A1 + ξ2A2 + i(ξ2
1 + ξ2

2)A3 − iS
]

= 0. (2.116)
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When we define ν = −ω + ξ1u + ξ2v, this leads to
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ξ1 ξ2 0 0 0 0 0

ξ1 Rν − iβ|ξ|2 0 −ξ1 0 0 −ξ2 0

ξ2 0 Rν − iβ|ξ|2 0 −ξ2 0 −ξ1 0

0 r1 0 Wν − iSσ 0 0 0 0

0 0 r2 0 Wν − iSγ 0 0 0

0 0 0 0 0 Wν − iSµ 0 0

0 r3 r4 0 0 0 Wν − iSτ 0

0 −ξ1σ + ξ2τ

3kλ
−ξ1τ + ξ2γ

3kλ
0 0 0 0 ν − iSλ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

(2.117)

where

r1 = −2ξ1m1 − 2ξ2m3,

r2 = −2ξ1m3 − 2ξ2m2,

r3 = −ξ2m2,

r4 = −ξ1m1.

The determinant can be rearranged to give

−|ξ|2(Wν − iSσ)(Wν − iSγ)(Wν − iSµ)(Wν − iSλ)

[(Rν − iβ|ξ|2)(Wν − iSτ ) − (c1ξ
2
1m1 + c2ξ

2
2m1 + 2c3ξ1ξ2m3)] = 0,

(2.118)

with

c1 = (ξ2
1 + ξ2

2(2
(Wν − iSτ )

(Wν − iSσ)
− 1))/|ξ|2,

c2 = (ξ2
2 + ξ2

1(2
(Wν − iSτ )

(Wν − iSγ)
− 1))/|ξ|2,

c3 = (ξ2
1

(Wν − iSτ )

(Wν − iSγ)
+ ξ2

2

(Wν − iSτ )

(Wν − iSσ)
)/|ξ|2.

For the Oldroyd B model, the source entries Sσ, Sγ and Sτ are unity. There is also no

need for the incorporation of the equations for µ and λ. This reduces the determinant
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to

−|ξ|2(Wν − i)2[(Rν − iβ|ξ|2)(Wν − i) − (ξ2
1m1 + ξ2

2m1 + 2ξ1ξ2m3)] = 0, (2.119)

which can also be expressed as

−|ξ|2(Wν − i)2[(Rν − iβ|ξ|2)(Wν − i) − WξτAξT ] = 0, (2.120)

where the tensor τA is defined as τ A = τ + 1−β
W

. For the UCM model the matrix

A3 = 0, which simplifies the determinant even more. It now reads

−|ξ|2(Wν − i)2[Rν(Wν − i) − WξτAξT ] = 0. (2.121)

The tensor τA can also be distilled from the determinant resulting from the XPP

model. If we define the tensor τ B by

τ B = τA +
1

|ξ|2





2ξ2
2Aτxx (ξ2

1B + ξ2
2A)τxy

(ξ2
1B + ξ2

2A)τxy 2ξ2
1Bτyy



 , (2.122)

where

A =
Wν − iSτ

Wν − iSσ
− 1 and B =

Wν − iSτ

Wν − iSγ
− 1,

then the determinantal equation for the XPP model (2.118) can be written as

−|ξ|2(Wν − iSσ)(Wν − iSγ)(Wν − iSµ)(Wν − iSλ)

[(Rν − iβ|ξ|2)(Wν − iSτ ) − WξτBξT ] = 0,
(2.123)

The determinantal equation for the Oldroyd B model has a double root ν = i/W and

two more roots satisfying the quadratic equation

ν2 − i

(

β|ξ|2
R

+
1

W

)

ν − ξτAξT

R
− β|ξ|2

RW
. (2.124)

The roots of the determinant of the UCM model are

ν =
i

W
,

i

W
,

i

2W
±

√

ξτAξT

R
− 1

4W 2
. (2.125)
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Since the tensor τ A is positive definite, the imaginary part of these roots is always

positive. This means that the imaginary part of ω ≤ 0 and so the waves damp ex-

ponentially in time and the models cannot be Hadamard unstable. Although this

indicates that the continuous problem is well-posed, this is not neccesarily true for

the corresponding discrete problem in which τ A may lose its positive definiteness

beyond some Weissenberg number.

As is shown in [26] and [38] the type of the equations can be determined by analyzing

the factors of the principal part of the determinants above. For the Oldroyd B model

the principal part of the left-hand side of (2.120) is

iβ(ξ2
1 + ξ2

2)
2W 3ν3. (2.126)

The three real characteristics associated with ν3 represent the hyperbolic part of the

Oldroyd B equations. These characteristics correspond to the three stress equations

in the Oldroyd B model, indicating that the stress components are convected along

the streamlines. The factor (ξ2
1 + ξ2

2)
2 represents the parabolic and elliptic parts of

the equations.

The principal part of the determinant for the UCM model is

(ξ2
1 + ξ2

2)W
3ν2[ξτAξT − Rν2]. (2.127)

The parabolic part of the principal part is missing in the UCM model. It is therefore

of mixed elliptic and hyperbolic type. The principal part of the determinant for the

XPP model (2.123) is similar to the principal part of the Oldroyd B model. It reads

iβ(ξ2
1 + ξ2

2)
2W 5ν5. (2.128)

There are now five quantities convected along the streamlines. They are the four

stress components and the stretch, whose equations correspond to the five real char-

acteristics associated to ν5. The parabolic and elliptic parts associated with the factor
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(ξ2
1 + ξ2

2)
2 are present in the XPP model as well.

The hyperbolic part of the equations is responsible for some of the numerical prob-

lems since discretization errors may propagate along real characteristics. Newtonian

problems are purely elliptic and do not have real characteristics. A common observa-

tion in viscoelastic problems is that with increasing Weissenberg number, solutions

can only be obtained on ever coarser meshes.

Gerritsma and Phillips [19] have analyzed the determinant of the UCM model, iden-

tified two characteristic variables that are transported along the streamlines and

concluded that it would suffice to prescribe two stress boundary conditions at the in-

flow of a domain for the UCM model. These conditions may consist of combinations

of the three stress components. The Oldroyd B model contains three real charac-

teristics and therefore all three stress components may be prescribed as boundary

conditions on an inflow boundary. The XPP model contains five real characteristics.

This means that the four stress components and the stretch may be prescribed as

boundary conditions at inflow.

2.5.3 The second normal stress difference

As is described in section 1.2.4, the first and second normal stress differences are

responsible for many phenomena that can be observed in viscoelastic fluids. The

normal stress differences in a simple shear flow, as predicted by the models described

before will be presented here. The velocity field for a simple shear flow is given in

Cartesian coordinates by

(u, v, w) = (γ̇y, 0, 0). (2.129)

For Newtonian fluids both the first normal stress difference N1 = Txx − Tyy and the

second normal stress difference N2 = Tyy−Tzz are zero. The normal stress differences
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predicted by the Maxwell and Oldroyd B models are given in Table 2.2. It is known

that for viscoelastic fluids, the first normal stress difference is an order of magnitude

larger than the second normal stress difference, and of opposite sign. For this reason,

the corotational and the lower-convected derivatives are rejected, and only the upper-

convected derivative will be used in this thesis.

Table 2.2: The first and second normal stress differences predicted by the Maxwell

and Oldroyd B models.

Model N1 N2

Upper Convected Maxwell 2λ1ηγ̇2 0

Corotational Maxwell
2ληγ̇2

1 + λ2γ̇2
− ληγ̇2

1 + λ2γ̇2

Lower Convected Maxwell 2λ1ηγ̇2 −2λ1ηγ̇2

Oldroyd B 2(λ1 − λ2)ηγ̇2 0

2.5.4 Shear and extensional viscosity

The shear and extensional viscosities that are predicted by a certain constitutive

model can be found by substituting the appropriate velocity field into the model, and

calculating the stress solution. With a shear rate γ̇, the velocity field in shear is given

in Cartesian coordinates by

(u, v, w) = (γ̇y, 0, 0), (2.130)

and the uniaxial extensional velocity field under a strain rate of ε̇ is given by

(u, v, w) = (ε̇x,− ε̇

2
y,− ε̇

2
z). (2.131)

Newtonian fluids

For Newtonian fluids, the shear stress in the velocity field (2.130) is found to be

τxy = γ̇η, giving rise to a constant shear viscosity of ηS = η. The first normal
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stress difference in extensional flow is τxx − τyy = 3ε̇η, so the extensional viscosity is

ηE = 3η. The Trouton ratio is defined as the extensional over the shear viscosity, and

it is ηE/ηS = 3 for Newtonian fluids.

The Maxwell and Oldroyd models

Both the Maxwell and the Oldroyd B model have a constant shear viscosity. They

also both predict infinite extensional viscosity at a finite extensional rate. This can

be easily shown by solving the constitutive equation for τxx,

∂

∂t
τxx = 2ε̇τxx −

1

λ
(τxx − 2ηε̇). (2.132)

This has the solution

τxx =
2ηε̇

1 − 2λε̇

(

1 − e
2λε̇−1

λ
t
)

, (2.133)

which goes to infinity for the steady state when ε̇ > 1
2λ

.

Analytic solutions to the pom-pom model

Analytic solutions for the shear and extensional viscosity are presented for the origi-

nal pom-pom model, without the Blackwell modification to the stretch equation.

Shear viscosity

For the velocity field for a fluid in shear and in absence of convection, the equations

(2.68) reduce to

∂

∂t
Axx(t) − 2γ̇Axy(t) = −Axx(t) − 1/3

τb
, (2.134)

∂

∂t
Ayy(t) = −Ayy(t) − 1/3

τb
, (2.135)

∂

∂t
Azz(t) = −Azz(t) − 1/3

τb

, (2.136)

∂

∂t
Axy(t) − γ̇Ayy(t) = −Axy(t)

τb
. (2.137)
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The solutions to these equations are found to be

Axx(t) =
1

3
+

2

3
γ̇2τ 2

b

(

1 − e−t/τb(1 + t/τb)
)

, (2.138)

Ayy(t) = Azz(t) =
1

3
, (2.139)

Axy(t) =
1

3
γ̇τb

(

1 − e−t/τb
)

. (2.140)

The solutions to the equations for the other off-diagonal terms are all zero. When

t → ∞, the limits of these solutions for Axx and Axy are found to be

lim
t→∞

Axx(t) =
1

3
+

2

3
γ̇2τ 2

b , lim
t→∞

Axy(t) =
1

3
γ̇τb.

The nonzero entries of the orientation tensor S = A/IA can now be expressed as

lim
t→∞

Sxx(t) =
2γ̇2τ 2

b + 1

2γ̇2τ 2
b + 3

, lim
t→∞

Sxy(t) =
γ̇τb

2γ̇2τ 2
b + 3

,

lim
t→∞

Syy(t) = lim
t→∞

Szz(t) =
1

2γ̇2τ 2
b + 3

.

The stretch equation (2.69) can now be written as

∂λ(t)

∂t
= λ(t)

2γ̇2τb

2γ̇2τ 2
b + 3

− λ(t) − 1

τs

. (2.141)

Note that this is not a true time dependent solution, but just a method for deriving

the limiting behaviour of λ. The solution to this equation is

λ(t) =
1

−γ̇2τbτs + (2γ̇2τ 2
b + 3)

(

(2γ̇2τ 2
b + 3) − γ̇2τbτse

−t
−γ̇2τbτs+(2γ̇2τ2

b
+3)

(2γ̇2τ2
b
+3)τs

)

, (2.142)

and since τb > τs, this reduces in the limit of t → ∞ to

lim
t→∞

λ(t) =
2γ̇2τ 2

b + 3

−γ̇2τbτs + (2γ̇2τ 2
b + 3)

. (2.143)

The shear stress is given by

σxy(t) = 3G0λ
2(t)Sxy(t), (2.144)

and the shear viscosity is related to the shear stress through

ηS =
1

γ̇
lim
t→∞

σxy(t), (2.145)
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and is found to be

ηS = 3G0
τb(2γ̇

2τ 2
b + 3)

(−γ̇2τbτs + (2γ̇2τ 2
b + 3))2

. (2.146)

The shear viscosity is plotted against γ̇ in Fig. 2.7 for values of τb = 3.24, τs = 1,

G0 = 1. This ratio of relaxation times is similar to those used by Bishko [3].

γ. (s-1)

η S
(P

a.
s)
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10-2
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100

101

Figure 2.7: Shear viscosity predicted by the original pom-pom model without Black-

well’s modification to the stretch equation.

Extensional viscosity

For the uniaxial extensional velocity field, the equations for the normal orientations

in the original pom-pom model (2.68), in absence of convection, reduce to

∂

∂t
Axx(t) − 2ε̇Axx(t) = −Axx(t) − 1/3

τb

, (2.147)

∂

∂t
Ayy(t) + ε̇Ayy(t) = −Ayy(t) − 1/3

τb
, (2.148)

∂

∂t
Azz(t) + ε̇Azz(t) = −Azz(t) − 1/3

τb

, (2.149)

The solution to these problems are

Axx(t) = − 1/3

2ε̇τb − 1

(

2ε̇τbe
(2ε̇τb−1)t

τb − 1

)

, (2.150)

Ayy(t) = Azz(t) =
1/3

ε̇τb + 1

(

ε̇τbe
−

(ε̇τb+1)t

τb + 1

)

. (2.151)
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All the solutions to the equations for the off-diagonal terms are zero. It is clear that

a discontinuity is present in the solution at ε̇τb = 1/2. The limits for t → ∞ are given

by

lim
t→∞

Axx(t) =
−1/3

2ε̇τb − 1
, lim

t→∞

Ayy(t) = lim
t→∞

Azz(t) =
1/3

ε̇τb + 1
, when ε̇τb < 1/2,

lim
t→∞

Axx(t) = ∞, lim
t→∞

Ayy(t) = lim
t→∞

Azz(t) =
1/3

ε̇τb + 1
, when ε̇τb > 1/2.

And the corresponding limits for S = A/IA are

lim
t→∞

Sxx(t) = − ε̇τb + 1

3(ε̇τb − 1)
, lim

t→∞

Syy(t) = lim
t→∞

Szz(t) =
2ε̇τb − 1

3(ε̇τb − 1)
, when ε̇τb < 1/2,

lim
t→∞

Sxx(t) = 1, lim
t→∞

Syy(t) = lim
t→∞

Szz(t) = 0, when ε̇τb > 1/2.

Without Blackwell’s modification, the stretch equation (2.69) for extensional flow is

∂λ(t)

∂t
= λ(t)

(

ε̇Sxx(t) −
ε̇

2
Syy(t) −

ε̇

2
Szz(t)

)

− λ(t) − 1

τs
. (2.152)

Again this is not a true time dependent solution, but just a method for deriving the

limiting behaviour of λ. The solution is

λ(t) =
(ε̇τb − 1) + ε̇2τbτse

−
ε̇2τbτs+(ε̇τb−1)

(ε̇τb−1)τs
t

ε̇2τbτs + (ε̇τb − 1)
, when ε̇τb < 1/2, (2.153)

λ(t) =
1

1 − ε̇τs

(

1 − ε̇τse
ε̇τs−1

τs
t
)

, when ε̇τb > 1/2. (2.154)

The denominator in the expression (2.153) when ε̇τb < 1/2 is never equal to zero

since τs < τb. There is a discontinuity in the expression for ε̇τb > 1/2, and this is

at ε̇τs = 1. Three separate cases can now be identified, ε̇τb < 1/2 and ε̇τb > 1/2

with both ε̇τs < 1 and ε̇τs > 1. Since τb > τs, these can be expressed respectively as

ε̇ < 1/2τb, 1/2τb < ε̇ < 1/τs and ε̇ > 1/τs. The limits of the stretch for t → ∞ are

given by

lim
t→∞

λ(t) =
ε̇τb − 1

ε̇2τbτs + (ε̇τb − 1)
, when ε̇ <

1

2τb
,

lim
t→∞

λ(t) =
1

1 − ε̇τs
, when

1

2τb
< ε̇ <

1

τs
,

lim
t→∞

λ(t) = ∞, when ε̇ >
1

τs
.
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As mentioned before, there is an upper limit to the value of λ because of arm with-

drawal when λ = q. This means that ε̇τs can never reach the value of one. Instead,

the limiting value of ε̇τs is given by

1

1 − ε̇τs
= q → ε̇τs = 1 − 1

q
(2.155)

In the case of ε̇ > (1 − 1/q)/τs the expression (2.154) is replaced by

λ(t) = q, (2.156)

such that the lim
t→∞

λ(t) is not infinity, but simply q. The first normal stress difference

N1 is given by

N1(t) = σxx(t) − σyy(t) = 3G0λ
2(t)(Sxx(t) − Syy(t)), (2.157)

and the extensional viscosity is related to the first normal stress difference through

ηE =
1

ε̇
lim
t→∞

N1(t), (2.158)

so for the different regimes, the extensional viscosity is found to be

ηE =











































3G0
ε̇τb(1 − ε̇τb)

ε̇(ε̇2τbτs + ε̇τb − 1)2
, when ε̇ <

1

2τb
,

3G0
1

ε̇(1 − ε̇τs)2
, when

1

2τb

< ε̇ <
1

τs

(1 − 1

q
),

3G0
q2

ε̇
, when ε̇ >

1

τs
(1 − 1

q
).

Note that ηE is also continuous at ε̇τb = 1/2. For values of q = 5, τb = 3.24,

τs = 1, and G0 = 1, the extensional viscosity is plotted as a function of ε̇ in Fig.

2.8. Clearly, the derivative of the extensional viscosity is discontinuous in two places.

Following numerical results will show that the second discontinuity can be removed

by introducing Blackwell’s modification to the stretch equation.
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Figure 2.8: Extensional viscosity predicted by the original pom-pom model without

Blackwell’s modification to the stretch equation.

Numerical solutions to the pom-pom model

For the original pom-pom model with Blackwell’s modification (2.68), (2.71), and

for the extended pom-pom model (2.72), (2.73), numerical solutions to the predicted

shear and extensional viscosities are sought for using Maple. Again, the convective

terms in the equations for orientation and stretch are neglected.

For the original pom-pom model, three different values for the parameter ν in Black-

well’s modification have been tested. Fig. 2.9 shows that, although there is no visible

difference in the predicted shear viscosity, the parameter ν does affect the extensional

viscosity. When ν = 0 the solution is as in Fig. 2.8, and has a very distinct disconti-

nuity in the derivative of the extensional viscosity. When ν increases the discontinuity

gradually becomes weaker.

The same values of ν have been tested for the XPP model, combined with values of

α = 0 and α = 0.15. It is clear from Fig. 2.10 that the plateau of shear viscosity

decreases at a slower rate than in the original pom-pom model. When ν is set to zero,

the shear viscosity even reaches a plateau value at high shear rates. With α = 0.15,
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Figure 2.9: Shear and extensional viscosity predicted by the original pom-pom model

with varying values for ν.

the solution could not be evaluated at large shear rates. The plateau at low shear

rates is of the same value as for the original pom-pom model. Unlike in the original

pom-pom model, the effect of different values of ν is visible in the shear viscosity.

The higher the value of ν, the steeper the decrease in shear viscosity at high shear

rates.
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Figure 2.10: Shear viscosity predicted by the XPP model with varying values for ν,

for both α = 0 and α = 0.15.

Fig. 2.11 shows the extensional viscosity predicted by the XPP model for different
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values of ν and α. The first thing that can be concluded is that there are no discon-

tinuities in the derivative of the extensional viscosity predicted by the XPP model.

When ν is set to zero, the extensional viscosity shoots to infinity. This is due to

the effect that when ν = 0, the stretch in the XPP model is unbounded since the

condition λ < q is removed from the equations. The value of the viscosity at low

strain rates is again equivalent to the value predicted by the original pom-pom model.

Increasing the value of ν has a decreasing effect on the extensional viscosity at high

strain rates, similar to the original pom-pom model.
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Figure 2.11: Extensional viscosity predicted by the XPP model with varying values

for ν, for both α = 0 and α = 0.15.

A comparison of the predicted shear and extensional viscosities for the original pom-

pom model, and the XPP model with α = 0 and α = 0.15 is shown in Fig. 2.12.

The value of ν is fixed at ν = 2/q, the value that will be used throughout the rest

of this thesis. It is very clear that the original pom-pom model predicts a sharper

fall in shear viscosity at high shear rates, although the plateau values of both shear

and extensional viscosity are the same for the original pom-pom model and the XPP

model. Note that the lines of the extensional viscosity for the XPP model intersects

the second discontinuity of the original pom-pom model. The first discontinuity is

not present in the XPP model either, although a slight ’bump’ can be observed in
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Figure 2.12: Comparison of shear and extensional viscosity predicted by the original

pom-pom (PP) and the XPP models.

the solution. Increasing the value of α does not have a great effect on the shear and

extensional viscosities.
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Chapter 3

Temporal and Spatial

Discretization

3.1 Introduction

The equations that govern the flow of any real fluid are, in many cases, impossible

to solve analytically. The Stokes model or the Oldroyd B model for example, can be

solved analytically for Poiseuille or Couette flow. The same excerise is not possible

however for the pom-pom model, nor is it possible to solve analytically any of the

presented models for the flow through a contraction, or past a confined cylinder. In

all of these cases numerical techniques have to be reverted to.

There are many ways of finding a numerical approximation to flow problems, and the

most popular ones are described in section 3.2. This chapter goes on to describe how

the continuous equations from the previous chapter are discretized both in time (see

section 3.3) and in space using the spectral element method (see sections 3.4-3.5). A

modification to the test functions used in the spectral element method is proposed

in section 3.6. The modified test function allows for easy implementation of zero
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Neumann boundary conditions and circumvents problems arising due to a zero radial

coordinate in axisymmetric problems. Section 3.7 presents the discretized equations.

3.2 Numerical Approximation Methods

The most popular methods that are used in numerical approximation are the finite

difference (FD) method, the finite element (FE) method, the finite volume (FV)

method and the spectral element (SE) method. In these numerical methods deriva-

tives in the continuous equations are approximated on a grid by some approximation

function. The methods have originally been developed for generating numerical so-

lutions to elliptic problems, and for elliptic problems refinement of the grid results

in approximations that converge to the exact solution, provided the solution is suffi-

ciently regular. However, when convection is present or when elasticity is introduced

it is not known a priori whether or not this property is satisfied. Therefore mesh con-

vergence studies need to be carried out before anything can be said about numerical

solutions to problems that are not purely elliptic.

In the FD, FE and FV methods the approximation functions are of a local nature,

whereas in SE methods there is a longer range coupling to approximate the deriva-

tives. This is achieved by choosing high-order polynomials as approximation func-

tions. The major advantage of this is that for smooth problems SE methods exhibit

superior convergence of the solution to the exact solution with refinement of the grid.

Comparison of the SE method with FE methods is obvious, since both methods dis-

cretize the so-called weak formulation of the equations. In the FE method, the grid

covering the geometry of the problem under consideration consists of many small ele-

ments on which the derivatives are approximated. The accuracy of the approximation

can be increased by decreasing the size h of these elements. For the same problem,
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a SE grid consists of only a few large elements in which the long range coupling

takes place. In SE methods the accuracy of the approximation can be increased by

decreasing the size of the elements h, or by increasing the order of the polynomial

approximation p. Therefore spectral element methods are often referred to as h/p

methods. It is this p-type refinement that results in superior convergence properties.

In viscoelastic flow calculations very narrow regions of high gradients of stress can

be encountered in the solution. The advantage of the SE method in these cases is

obvious. By placing smaller elements in these regions, the high-order approximation

can reproduce these high gradients.

3.3 Discretization in Time

In the governing equations (2.106)-(2.108), the time t is an independent variable. It

will not however be discretized using a spectral approximation. Instead, first and

second-order temporal schemes are used, and time-stepping is required to find solu-

tions to the equations. The discrete time levels are denoted as tk, where k = n + 1

refers to the time level that is to be calculated next, k = n refers to the time level at

which the solution has just been calculated, and k = n−1 is the time level before that.

At this point, a distinction must be made between algorithms that solve all equations

simultaneously, and algorithms that solve the field equations first, and then use the

resulting velocity vector to solve the constitutive equation. The first is called a cou-

pled solver, the latter an uncoupled solver.

Another distinction is whether the non-linear terms in the equations (2.106)-(2.108)

are treated explicitly or implicitly. Most calculations presented in this thesis are

performed using a coupled solver with explicit treatment of the non-linear terms, i.e.
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the non-linear terms that are present in the constitutive equations are approximated

by combinations of the terms at previous time levels tn and tn−1. The temporal scheme

for this solver is presented first, followed by schemes that have been implemented for

coupled and uncoupled solvers with implicit treatment of the non-linear terms.

3.3.1 Explicit coupled solver

In a coupled solver, the field equations are solved simultaneously with the constitutive

equation such that the solutions to all variables at time tn+1 are found simultaneously.

The equations (2.106)-(2.108) may be written as

∇ · un+1 = 0, (3.1)

Mlu
n+1 + ∇pn+1 −∇ · τ n+1 − β∇2un+1 = g(u), (3.2)

Cl(λ, τ )τ n+1 − h(λ, τ ,u) = 2(1 − β)dn+1, (3.3)

where Ml, g(u), Cl(λ, τ ) and h(λ, τ ,u) depend on the chosen temporal scheme to ap-

proximate the time derivatives and non-linear terms. Four distinct temporal schemes

have been implemented, of which two are first-order, and two are second-order.

Euler/Euler

This temporal discretization is a first-order scheme, using an Euler scheme to approx-

imate the material derivatives in the momentum, constitutive and stretch equations,

and also an Euler approximation for the explicitly treated terms in the constitutive

equation.

• The material derivative

The Euler approximation of the material derivative of a function G is

DG

Dt
=

∂G

∂t
+ u · ∇G ≈ Gn+1 − Gn

∆t
+ un · ∇Gn. (3.4)
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• The non-linear terms

An Euler approximation is used for the deformation terms and the other non-

linear terms in the constitutive equation (2.108), calculated explicitly at the old

time level, is

En+1(λ, τ ,u) ≈ En(λ, τ ,u), (3.5)

where Ek(λ, τ ,u) = E(λk, τ k,uk), and

E(λ, τ ,u) = (f(λ, τ )−1)
1 − β

We
I+

αWe

1 − β
τ ·τ −We(∇u)τ −Weτ (∇u)T . (3.6)

BDF2/EX2

The BDF2/EX2 scheme is the second-order equivalent to the Euler/Euler temporal

discretization. It comprises a second-order Backward Differentiation Formula (BDF)

for the material derivatives of the velocity, stress and stretch, and a second-order

Extrapolation Scheme (EX) for the other non-linear terms.

• The material derivative

The second-order Backward Differentiation Formula, as used by Fiétier and

Deville [15], approximates the material derivative of a function G as

DG

Dt
=

∂G

∂t
+ u · ∇G

≈ 3Gn+1 − 4Gn + Gn−1

2∆t
+ 2un · ∇Gn − un−1 · ∇Gn−1. (3.7)

• The non-linear terms

The second-order Extrapolation Scheme, as used by Fiétier and Deville [15],

approximates the non-linear terms in the constitutive equation as

En+1(λ, τ ,u) ≈ 2En(λ, τ ,u) − En−1(λ, τ ,u), (3.8)
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OIFS1/Euler

This scheme uses two first-order temporal discretizations. A first-order Operator

Integration Factor Splitting (OIFS) technique for the material derivatives, and an

Euler approximation for the other non-linear terms.

• The material derivative

The discretization of the material derivatives of both the velocity in the mo-

mentum equations, and the stress in the constitutive equation, will be obtained

using a first-order OIFS scheme (see Maday et al. [33]). The material derivative

of a function G is approximated as

DG

Dt
=

∂G

∂t
+ u · ∇G ≈ 1

∆t
(Gn+1 − G̃(tn+1)). (3.9)

The approximation G̃(tn+1) is the solution at time t = tn+1 of the pure convec-

tion problem

∂G̃

∂t
= −un · ∇G̃, t ∈ [tn, tn+1], with G̃(x, tn) = Gn(x), (3.10)

A fourth-order explicit Runge-Kutta (RK4) method is used to solve the initial

value problem. In the RK4 method, an additional time step is required. This

time step h is defined as h = ∆t
M

, with M the number of RK4 iterations per

outer time step, and ∆t = tn+1 − tn.

• The non-linear terms

An Euler approximation for the non-linear terms, calculated explicitly at the

old time level, is

En+1(λ, τ ,u) ≈ En(λ, τ ,u). (3.11)

OIFS2/AB2

This is the second-order equivalent to the OIFS1/Euler scheme, and uses two second-

order temporal discretizations. A second-order Operator Integration Factor Splitting
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(OIFS) technique for the material derivatives of the velocity, stress and stretch, and

a second-order Adams-Bashforth (AB) approximation for the other non-linear terms

in the constitutive equation.

• The material derivative

The material derivative of a function G is approximated as

DG

Dt
=

∂G

∂t
+ u · ∇G ≈ 1

2∆t
(3Gn+1 − 4G̃(tn+1) + ˜̃G(tn+1)). (3.12)

The approximations G̃(tn+1) and ˜̃G(tn+1) are the solutions at time t = tn+1 of

the pure convection problems

∂G̃

∂t
= −u∗ · ∇G̃, t ∈ [tn, tn+1], with G̃(x, tn) = Gn(x), (3.13)

and

∂ ˜̃G

∂t
= −u∗ · ∇ ˜̃G, t ∈ [tn−1, tn+1], with ˜̃G(x, tn−1) = Gn−1(x), (3.14)

where u∗ is a second-order approximation for the velocity at intermediate time

levels given by

u∗ =
(t − tn−1)

∆t
un +

(

1 − (t − tn−1)

∆t

)

un−1. (3.15)

Again, the initial value problems are solved using a fourth-order explicit Runge-

Kutta (RK4) method, which requires the additional time step h = ∆t
M

, with M

the number of RK4 iterations per outer time step, and ∆t = tn+1 − tn.

• The non-linear terms

An explicit second-order Adams-Bashforth (AB) scheme is used to approximate

the deformation terms at the new time level t = tn+1. The scheme is given by

(see Karniadakis and Sherwin [27], for example)

Fn+1 ≈
J−1
∑

q=0

βqF
n+1−q. (3.16)
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The factor J is the order of the AB scheme. For the second-order approximation

(J = 2), the coefficients βq are given by

β0 = 0, β1 = 3/2, β2 = −1/2, (3.17)

which yields the following approximation to the non-linear terms

En+1(λ, τ ,u) ≈ 3

2
En(λ, τ ,u) − 1

2
En−1(λ, τ ,u). (3.18)

The semi-discrete equations

As an example, the OIFS2/AB2 scheme is applied to the set of governing equations

(2.106)-(2.108). This yields the semi-discrete equations for the independent variables

at the new time level tn+1,

∇ · un+1 = 0, (3.19)

Re

2∆t
(3un+1 − 4ũ(tn+1) + ˜̃u(tn+1)) = −∇pn+1 + ∇ · τ n+1 + β∇2un+1, (3.20)

(
3

2
fn(λ,τ ) − 1

2
fn−1(λ, τ ))τ n+1+

We

2∆t
(3τ n+1 − 4τ̃ (tn+1) + ˜̃τ (tn+1)) =

2(1 − β)dn+1 − (
3

2
En(λ, τ ,u) − 1

2
En−1(λ, τ ,u)).

(3.21)

The functions Ml, g(u), Cl(λ, τ ) and h(λ,u, τ ) in the semi-discrete equations (3.1)-

(3.3) are determined from these equations. For the four different temporal schemes,

the parameter Ml and the vector g(u) are defined in Table 3.1, the parameter Cl(λ, τ )

in Table 3.2 and the tensor h(λ,u, τ ) in Table 3.3.

When the double equation version of the XPP model is used, there is an extra equation

for the stretch (2.97). After pn+1, un+1 and τ n+1 have been calculated, the stretch

λn+1 can be found from the temporally discretized stretch equation,

3λn+1 − 4λ̃(tn+1) + ˜̃λ(tn+1)

2∆t
=

We

3(1 − β)

(dn+1 : τ n+1)

λn+1
− λn+1 − 1

εWe
eν(λn+1−1). (3.22)
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This equation can be solved iteratively at each time step by employing the iterative

scheme

3µ(m+1) − 4λ̃(tn+1) + ˜̃λ(tn+1)

2∆t
=

We

3(1 − β)

(dn+1 : τ n+1)

µ(m+1)
− µ(m+1) − 1

εWe
eν(µ(m)−1),

(3.23)

with µ(0) = λn. When the convergence criterion |µ(m+1) − µ(m)| < 10−8 is satisfied,

we set λn+1 = µ(m+1).

In this thesis the stretch will be calculated using the direct coupling to the stress

from the single equation version of the XPP model,

λ =

√

1 +
We

(1 − β)

1

3
Iτ . (3.24)

Although Verbeeten et al. [62] noted that in their computations, the argument of

this expression may become negative, we have never encountered this unphysical

behaviour. Therefore we will only use expression 3.24 to calculate stretches in this

thesis.

Table 3.1: The parameter Ml and the vector g(u) for the three temporal schemes.

Scheme Ml g(u)

Euler/Euler Re
∆t

Re(un

∆t
− un · ∇un)

BDF2/EX2 3Re
2∆t

Re
2∆t

(4un − un−1) − Re(2un · ∇un − un−1 · ∇un−1)

OIFS1/Euler Re
∆t

Re
∆t

ũ(tn+1)

OIFS2/AB2 3Re
2∆t

Re
2∆t

(4ũ(tn+1) − ˜̃u(tn+1))

3.3.2 Implicit coupled solver

As will be shown in chapter 6 instabilities in the numerical solutions may cause the

solution to diverge eventually, even in smooth problems at relatively low Weissenberg

numbers. The explicit treatment of the non-linear terms may be the cause of such
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Table 3.2: The factor Cl(λ, τ ) for the four temporal schemes.

Scheme Cl(λ, τ )

Euler/Euler fn(λ, τ ) + We
∆t

BDF2/EX2 (2fn(λ, τ ) − fn−1(λ, τ )) + 3We
2∆t

OIFS1/Euler fn(λ, τ ) + We
∆t

OIFS2/AB2 ( 3
2
fn(λ, τ ) − 1

2
fn−1(λ, τ )) + 3We

2∆t

Table 3.3: The tensor h(λ,u, τ ) for the three temporal schemes. The function

E(λ, τ ,u) represents (f(λ, τ ) − 1) 1−β
We

I + αWe
1−β

τ · τ − We(∇u)τ − Weτ (∇u)T .

Scheme h(λ,u, τ )

Euler/Euler We(τ
n

∆t
− un · ∇τ n) − En(λ, τ ,u)

BDF2/EX2 We
2∆t

(4τ n − τ n−1) − (2En(λ, τ ,u) − En−1(λ, τ ,u))

OIFS1/Euler We
∆t

τ̃ (tn+1) − En(λ, τ ,u)

OIFS2/AB2 We
2∆t

(4τ̃ (tn+1) − ˜̃τ (tn+1)) − (3
2
En(λ, τ ,u) − 1

2
En−1(λ, τ ,u))

instability. Therefore, an implicit coupled scheme has also been implemented. In this

scheme the solution at the time-level n+1 is found using an iterative process in which

the non-linear terms are calculated over and over again until the solution at tn+1 has

converged to a certain criterion. A first-order implicit scheme, with ∂G
∂t

≈ Gn+1−Gn

∆t

for the use with the Oldroyd B model, is defined by

∇ · un+1
(m+1) = 0

Re

∆t
un+1

(m+1) + ∇pn+1
(m+1) −∇ · τ n+1

(m+1) − β∇2un+1
(m+1) = Re(

un

∆t
− un+1

(m) · ∇un+1
(m) ), (3.25)

(1 +
We

∆t
)τ n+1

(m+1) − 2(1 − β)dn+1
(m+1) =

We

∆t
τ n − We

(

u · ∇τ − (∇u)τ − τ (∇u)T
)n+1

(m)
,
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where m is the iteration parameter. The convergence criteria are ||un+1
(m+1)−un+1

(m) || ≤ ε

and ||τ n+1
(m+1) − τ n+1

(m) || ≤ ε. The starting conditions un+1
(0) and τ n+1

(0) are set to be

un+1
(0) = un and τ n+1

(0) = τ n. (3.26)

It is obvious that this implicit coupled scheme it is quite expensive, since in every

iteration a problem needs to be solved that is the same in size as a full explicit

problem.

3.3.3 Implicit uncoupled solver

In the uncoupled solver, the constitutive equation is solved separate from the field

equations. This approach allows for a more implicit treatment of the constitutive

equation. Firstly, the field equations are solved as before, but with the divergence of

the stresses now being reviewed at the previous time level. Using equivalent functions

as in (3.1)-(3.3), the field equations now read

∇ · un+1 = 0, (3.27)

Mlu
n+1 + ∇pn+1 − β∇2un+1 = g(u) + ∇ · τ n, (3.28)

In the uncoupled solver, only the first-order OIFS1/Euler temporal approximation

will be used in the momentum equation. The values for Ml and of g(u) are the same

as those given in Table 3.1 for the OIFS1/Euler scheme.

With the new values of pressure and velocity, the stress is updated using the following

implicit formulation of the semi-discrete constitutive equation

Cl(λ
n, τ n)τ n+1 + We

(

u∇ · τ − (∇u)τ − τ (∇u)T
)n+1

+
αWe

1 − β
τ n · τ n+1 = 2(1 − β)dn+1 + h(λ,u, τ ).

(3.29)

Since many terms in the constitutive equation are treated implicitly, the factors

Cl(λ, τ ) and h(λ, τ ,u) are different from the ones given in Tables 3.2 and 3.3. Instead
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they are given by

Cl(λ, τ ) = f(λ, τ ) +
We

∆t
, (3.30)

h(λ, τ ,u) =
We

∆t
τ n − (fn(λ, τ ) − 1)

1 − β

We
I. (3.31)

The values for the stretch λ are updated afer the stress is calculated.

Although an uncoupled solver is usually less stable than a coupled solver, it is less

expensive to use in conjunction with implicit treatment of the non-linear terms. Due

to a more critical CFL condition however, it is expected that smaller time steps

should be taken when the uncoupled solver is used.

3.4 Weak Formulation

The equations as presented in chapter 2 are in their ’strong’ formulation. In spectral

element methods however, the equations are not solved in the strong form, but in

their equivalent weak formulation. The weak formulation of a differential equation

is found by multiplying the strong formulation by a test function in an appropriate

space and then integrating the whole equation over the entire physical space in which

the equation needs to be solved. The advantage of doing this is that the equations

can now be reduced by one order through intergration by parts. For some problems

it is possible to find a symmetric resulting matrix formulation of the approximated

equation.

The spectral element method is applied to the weak formulation of the semi-discrete

equations (3.1)-(3.3). Suitable function spaces are chosen for the dependent variables.

The velocity is chosen to be in a subspace, V, of [H1(Ω)]2 whose elements satisfy the

prescribed velocity boundary conditions. The appropriate spaces for pressure and
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stress for this generalized Stokes problem are

P = [L2(Ω)],

T = [L2(Ω)]4s,

where the subscript s denotes the space of symmetric tensors. For this choice of func-

tion spaces, Gerritsma and Phillips [18] have shown that the integrals in the weak for-

mulation are well-defined for the corresponding Stokes problem. The resulting weak

formulation of the coupled equations (3.1)-(3.3) is then: Find (un+1, pn+1, τ n+1) ∈

V × P × T , such that

d(un+1, q) = 0, ∀ q∈P,

Mlc(u
n+1,v)+βe(un+1,v)−d∗(pn+1,v)+b(τn+1,v)=(g,v), ∀v∈V, (3.32)

Cla(τ n+1, σ) − (1 − β)b∗(un+1, σ) = (h, σ), ∀σ∈T .

After this problem is solved, equation (3.24) is solved for λn+1. The bilinear forms

a(·, ·) etc., are defined by

a(τ , σ) =

∫

Ω

τ : σdΩ, b(τ ,v) =

∫

Ω

τ : ∇vdΩ,

b∗(u, σ) =

∫

Ω

∇u : σdΩ, c(u,v) =

∫

Ω

u · vdΩ,

d(u, q) =

∫

Ω

∇ · uqdΩ, d∗(p,v) =

∫

Ω

p∇ · vdΩ,

e(u,v) =

∫

Ω

∇u : ∇vdΩ.

The bilinear forms a(·, ·), b(·, ·), c(·, ·), d(·, ·) and e(·, ·) induce continuous linear op-

erators A : T → T ′, B : T → V ′, C : V → V ′, D : T → P ′, and E : V → V ′, defined
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by

[Aτ , σ] = a(τ , σ), ∀ τ , σ∈T ,

[Bτ ,v] = b(τ ,v), ∀ τ ∈T , ∀v∈V,

[B∗u, σ] = b∗(u, σ), ∀u∈V, ∀σ∈T ,

[Cu,v] = c(u,v), ∀u,v∈V,

[Du, q] = d(u, q), ∀u∈V, ∀ q∈P,

[D∗p,v] = d∗(p,v), ∀ p∈P, ∀v∈V,

[Eu,v] = e(u,v), ∀u,v∈V.

In this notation, the dual problem to (3.32) is

Dun+1 = 0, in P ′,

(MlC + βE)un+1 − D∗pn+1 + Bτ n+1 = g, in V ′, (3.33)

ClAτ n+1 − (1 − β)B∗un+1 = h, in T ′.

3.5 Spatial Discretization

In the spectral element method, finite dimensional approximations to the operators in

(3.33) are constructed. The spatial discretization of the physical domain Ω of a certain

geometry, involves dividing Ω into K non-overlapping spectral elements Ωk, 1≤k≤K,

such that ∪K
k=1Ωk = Ω. This provides greater freedom in creating meshes in com-

plicated geometries, and also allows for higher mesh resolution in flow regions where

high gradients may occur. We denote by IPN (Ωk) the space of all polynomials on Ωk

of degree less than or equal to N , and further define PN(Ω) = {φ : φ|Ωk
∈ IPN(Ωk)}.

Each of the spectral elements is mapped onto a parent element D = [−1, 1]× [−1, 1],

where each point ξ = (ξ, η) ∈ D is associated with a point x = (x(ξ, η), y(ξ, η)) ∈ Ωk,

through a mapping operator F, such that x = F(ξ) (see Fig. 3.1). More information

about the mapping is given in section 3.5.1. The independent variables are then dis-
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cretized using spectral approximations, as described in section 3.5.2. The resulting

integral is approximated with a Gauss-Lobatto-Legendre integration rule (see section

3.5.3). The full discretized equations are given in section 3.7.

3.5.1 Transfinite mapping

The mapping from the grid in the parent element D onto the physical element Ω is

shown in Fig. 3.1.

x
y

Γ2

Γ1

Γ3

Γ4

x4

x1
x2

x3

Ωk

η
ξ

D
Γ4
^

Γ3
^

Γ2
^

Γ1
^(-1,-1) (1,-1)

(1,1)(-1,1)

F

Figure 3.1: The parent element D in computational space and an element Ωk in the

physical space.

The transformation of the weak form of the conservation of mass equation in (3.32)

from the physical space to the computational space is

∫

Ωk

(

∂u(x, y)

∂x
+

∂v(x, y)

∂y

)

q(x, y)dxdy =

∫

D

(

∂u(ξ, η)

∂x
+

∂v(ξ, η)

∂y

)

q(ξ, η) |det(J)| dξdη,

(3.34)

where J is the Jacobian of the transformation

J =









∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η









(3.35)
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From the Jacobian it can also be found that

∂

∂x
=

1

det(J)

(

∂y

∂η

∂

∂ξ
− ∂y

∂ξ

∂

∂η

)

and
∂

∂y
=

1

det(J)

(

∂x

∂ξ

∂

∂η
− ∂x

∂η

∂

∂ξ

)

.

(3.36)

The integral over the parent element D from (3.34) can now be expressed as

∫

D

[(

∂y

∂η

∂

∂ξ
− ∂y

∂ξ

∂

∂η

)

u(ξ, η) +

(

∂x

∂ξ

∂

∂η
− ∂x

∂η

∂

∂ξ

)

v(ξ, η)

]

q(ξ, η)
|det(J)|
det(J)

dξdη,

(3.37)

The mapping factors ∂x/∂ξ, ∂x/∂η, ∂y/∂ξ and ∂y/∂η depend on the mapping op-

erator F. For the transfinite mapping, Schneidesch and Deville [53] have introduced

a general transfinite operator Fa,b, where a and b denote the order of the polynomial

spaces used in the mapping. So F1,1 is the operator that yields the bi-linear transfinite

mapping that is used in this thesis. It is given by

F 1,1(ξ, η) = x =γ1(ξ)φ1(η) + γ2(η)φ2(ξ) + γ3(ξ)φ2(η) + γ4(η)φ1(ξ)

− x1φ1(η)φ2(ξ) − x2φ2(ξ)φ2(η) − x3φ2(η)φ1(ξ) − x4φ1(ξ)φ1(η),

(3.38)

where the parametrizations γi map the parent element boundaries Γ̂i onto the cor-

responding physical element boundaries Γi, γi : Γ̂i → Γi,

γ1(ξ) = x(ξ,−1), γ3(ξ) = x(ξ, +1),

γ2(η) = x(+1, η), γ4(η) = x(−1, η),

in which the coordinates of the corners are x1 = γ1(−1) = γ4(−1) etc. The basis

functions are defined by

φ1(ξ) =
1 − ξ

2
, φ2(ξ) =

1 + ξ

2
. (3.39)

A reason for choosing higher order mapping could be that with a Hermite mapping

F3,3, the derivatives of the grid lines in physical space can be prescribed. This means

that the grid lines can be made to be continuous over elemental boundaries or per-

pendicular to element boundaries, as shown for example in Fig. 3.2.
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Figure 3.2: Continuous derivatives of grid lines over element boundaries due to the

Hermite mapping.

The Hermite mapping operator is given by

F 3,3(ξ, η) =F 1,1(ξ, η) +
∂γ1

∂η
(ξ)φ̄1(η) +

∂γ2

∂ξ
(η)φ̄2(ξ) +

∂γ3

∂η
(ξ)φ̄2(η) +

∂γ4

∂ξ
(η)φ̄1(ξ)

− ∂γ1

∂η
(−1)φ̄1(η)φ1(ξ) −

∂γ1

∂η
(+1)φ̄1(η)φ2(ξ)

− ∂γ2

∂ξ
(−1)φ̄2(ξ)φ1(η) − ∂γ2

∂ξ
(+1)φ̄2(ξ)φ2(η)

− ∂γ3

∂η
(−1)φ̄2(η)φ1(ξ) −

∂γ3

∂η
(+1)φ̄2(η)φ2(ξ)

− ∂γ4

∂ξ
(−1)φ̄1(ξ)φ1(η) − ∂γ4

∂ξ
(+1)φ̄1(ξ)φ2(η)

− ∂γ1

∂ξ∂η
(+1)φ̄1(η)φ̄2(ξ) −

∂γ2

∂ξ∂η
(+1)φ̄2(ξ)φ̄2(η)

− ∂γ3

∂ξ∂η
(−1)φ̄2(η)φ̄1(ξ) −

∂γ4

∂ξ∂η
(−1)φ̄1(ξ)φ̄1(η).

The basis functions φ1, φ2 and φ̄1, φ̄2 for this cubic case are

φ1(ω) =
ω3 − 3ω + 2

4
, φ2(ω) = φ1(−ω),

φ̄1(ω) =
ω3 − ω2 − ω + 1

4
, φ̄2(ω) = −φ̄1(−ω).

Using this Hermite mapping might be a good idea in geometries like the undulated

channel, but for the problems in this thesis it introduces unneccesary complications

such as grid lines intersecting the outer boundaries as is shown in Fig. 3.3.
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Figure 3.3: Continuous derivatives of grid lines over element boundaries and grid

lines perpendicular to element boundaries resulting in invalid meshes.

3.5.2 Spectral approximations

The dependent variables are approximated on the parent element D using Lagrangian

interpolants, based on Legendre polynomials of degree N in both spatial directions.

The variables will be calculated explicitly on the points where the derivatives of the

Legendre polynomials in both directions vanish. The grid connecting all these nodes

within an element is called the Gauss-Lobatto-Legendre grid as can be seen in Figs.

3.1 to 3.3. The spectral element mesh shown in Fig. 3.4 is for a cylinder in a channel

with K = 5 elements and approximating polynomials of degree N = 11 within each

element.

Figure 3.4: Spectral element mesh for a cylinder in a channel with K = 5 and N = 11.

The discrete approximation spaces must satisfy a compatibility condition to ensure

that the problem is well-posed. For spectral elements Maday and Patera [33] have

shown that this LBB condition is satisfied when the velocity approximation space is

the polynomial space PN(Ω), and the pressure approximation space is PN−2(Ω). This

is ensured by letting the pressures grid comprise only the internal nodes of the GLL
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grid. The pressure at the element boundaries can then be calculated by extrapolation.

The velocity is continuous over element boundaries. The stress will be approximated

by polynomials in the space PN(Ω) as well. Although Gerritsma and Phillips [17]

have shown that allowing the stresses to be discontinuous over element boundaries

is a sufficient condition for stability of the three-field Stokes problem, this remains

an open issue for the viscoelastic models. In this thesis discontinuous stresses are

used to solve Newtonian problems, but continuous stresses are used for solving the

viscoelastic models in complex flows.

The spectral approximations in an element Ωk of the velocity and stress are given by

uk
N(ξ, η) =

N
∑

i=0

N
∑

j=0

uk
i,jhi(ξ)hj(η), (3.40)

τ k
N (ξ, η) =

N
∑

i=0

N
∑

j=0

τ k
i,jhi(ξ)hj(η), (3.41)

where the Lagrangian interpolants hi(ξ) are defined by

hi(ξ) = − (1 − ξ2)L′

N(ξ)

N(N + 1)LN(ξi)(ξ − ξi)
. (3.42)

The interpolants satisfy the Kronecker delta property hi(ξm) = δim. The collocation

points in the Gauss-Lobatto-Legendre grid can now be identified as ξ0 = −1, ξN = 1,

and ξi (i = 1, .., N − 1) the zeroes of L′

N(ξ). The pressure representation is

pk
N(ξ, η) =

N−1
∑

i=1

N−1
∑

j=1

pk
i,jh̃i(ξ)h̃j(η), (3.43)

in which the Lagrangian interpolants h̃i(ξ) are defined by

h̃i(ξ) = − (1 − ξ2
i )L

′

N(ξ)

N(N + 1)LN(ξi)(ξ − ξi)
, 1 ≤ i ≤ N − 1. (3.44)

This choice of the Lagrangian interpolant h̃i(ξ) ensures that the discrete pressure

nodes are the internal collocation points in the Gauss-Lobatto-Legendre grid.
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Substituting these spectral approximations in the weak formulation of the divergence

of velocity on the parent element (3.37), yields for the first term

∫

D

[

(

∂y

∂η

∂

∂ξ
− ∂y

∂ξ

∂

∂η

) N
∑

i=0

N
∑

j=0

uk
ijhi(ξ)hj(η)

]

q(ξ, η)
|det(J)|
det(J)

dξdη, (3.45)

which can be written as

∫

D

[

∂y

∂η

N
∑

i=0

N
∑

j=0

uk
ijh

′

i(ξ)hj(η) − ∂y

∂ξ

N
∑

i=0

N
∑

j=0

uk
ijhi(ξ)h

′

j(η)

]

q(ξ, η)
|det(J)|
det(J)

dξdη,

(3.46)

where the pressure test functions q(ξ, η) are also based on the Lagrangian interpolants,

according to

q(ξ, η) = h̃(ξ)h̃(η). (3.47)

The derivatives of hi(ξ) with respect to its argument ξ are denoted as h′

i(ξ). The

derivatives dij = h′

j(ξi) can be found to be

dij =















































































LN(ξi)

LN (ξj)

1

ξi − ξj
i 6= j,

−N(N + 1)

4
i = j = 0,

N(N + 1)

4
i = j = N,

0 i = j, 1 ≤ i, j ≤ N − 1.

(3.48)

3.5.3 Gauss-Lobatto integration

A Gauss-Lobatto quadrature rule will be used to integrate the integrals in the weak

formulation. In general, the Gauss-Lobatto integration is defined by

∫ 1

−1

∫ 1

−1

f(ξ, η)dξdη ≈
N
∑

m=0

N
∑

n=0

f(ξm, ηn)wmwn, (3.49)
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which is exact when f ∈ P2N−1. The numerical weights can be calculated as the

integral of the Lagrange polynomials, wm =
∫ 1

−1
hm(ξ)dξ. This yields for the Gauss-

Lobatto integration rule:

wm =
2

N(N + 1)[LN(ξm)]2
. (3.50)

When the Gaus-Lobatto integration rule in applied to the first term in the expression

(3.46), the following discrete sum is retrieved,

N
∑

m=0

N
∑

n=0

∂y

∂η mn

N
∑

i=0

N
∑

j=0

uk
ijh

′

i(ξm)hj(ηn)q(ξm, ηn)
|det(J)mn|
det(J)mn

wmwn. (3.51)

3.6 A Modified Lagrange Interpolant

A Lagrange interpolant is introduced that circumvents problems associated with the

zero radial coordinate in axisymmetric problems. By imposing the derivative to

disappear on the element boundaries corresponding to the axis of symmetry, the

local zero Neumann boundary condition is automatically satisfied. The test functions

associated with the axis of symmetry may then be excluded from the formulation for

variables that satisfy this Neumann condition. The values of the variable at the axis

can be calculated at the end of the computation, using the Lagrange interpolant to

extrapolate the values from inside the computational domain.

3.6.1 The original Lagrange interpolant

The Lagrange interpolant that is commonly used in spectral element methods has

already been introduced in equation (3.42). It is based on Legendre polynomials. For

a computational domain with discrete points at the zeros j = 0, 1, ..., N of the N-th

Legendre polynomial, it is defined by

hj(η) =
L′

N (η)(η2 − 1)

N(N + 1)LN(ηj)(η − ηj)
, 0 ≤ j ≤ N (3.52)
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in which LN (η) are the Legendre polynomials. This Lagrange interpolant satisfies

the following properties:

hj(ηi) = 0 i 6= j,

hj(ηi) = 1 i = j.

The derivative matrix dij = h′

j(ηi) is given in (3.48), and the numerical weights for

the Gauss-Lobatto integration rule are given in (3.50).

3.6.2 The modified Lagrange interpolant

Let u(ξ, η) be a variable that is approximated on a spectral element [−1, 1]× [−1, 1],

and let u(ξ, η) be subject to a zero Neumann boundary condition ∂u/∂η = 0 at

the element boundary η = −1. Using the modified Lagrange interpolant ĥj(η), the

spectral approximation to u(ξ, η) is

uN(ξ, η) =

N
∑

i=0

N
∑

j=1

ui,jhi(ξ)ĥj(η). (3.53)

Note that the nodes at the element boundary corresponding to j = 0 are excluded

from the respresentation. If this boundary is an axis of symmetry, the problem with

the zero radial coordinate is removed since it simply is not present in the discrete

equations. The modified Lagrange interpolant ĥj(η) has to satisfy
∂uN (ξ, η0)

∂η
=

u′

N(ξ,−1) = 0 automatically. The general form of the modified Lagrangian inter-

polant is

ĥj(η) =
L′

N (η)(1 − η)

(η − ηj)
(aη + b), 1 ≤ j ≤ N − 1, (3.54)

which satisfies

ĥj(ηi) = 0, i 6= j, 1 ≤ i, j ≤ N − 1,

ĥj(ηN) = ĥj(+1) = 0, 1 ≤ j ≤ N − 1.
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The factors a and b are calculated using the following properties of ĥj(η):

ĥj(ηi) = 1, i = j, 1 ≤ j ≤ N − 1, (3.55)

∂

∂η
ĥj(η)|(η=η0) = 0, 1 ≤ j ≤ N − 1, (3.56)

the last of which ensures the derivative to be zero at η = η0, the nodal point corre-

sponding to the axis of symmetry.

Since the expression for ĥj(η) is not valid for j = N , a separate interpolant ĥN(η)

has to be found. Similar as before, this one is of the form

ĥN (η) = L′

N(η)(cη + d), (3.57)

which is set up such that it satisfies

ĥN(ηi) = 0, 1 ≤ i ≤ N − 1. (3.58)

Again, it also has to satisfy the following conditions:

ĥN (ηN) = 1, (3.59)

∂

∂η
ĥN(η)|(η=η0) = 0. (3.60)

This will provide the factors c and d. The calculation of the modified Lagrangian

interpolant ĥj(η) and its derivative d̂ij is presented in Appendix D, and it is shown

that they can be expressed in terms of the original interpolants h:

ĥj(η) = hj(η) − 4(−1)N

N(N + 1)LN (ηj)(1 + ηj)
h0(η), 1 ≤ j ≤ N,

and

d̂ij = dij −
4(−1)N

N(N + 1)LN(ηj)(1 + ηj)
di0, 1 ≤ j ≤ N.

This makes evaluating the weights for the modified interpolant easy:

ŵj = wj −
4(−1)N

N(N + 1)LN (ηj)(1 + ηj)
w0, 1 ≤ j ≤ N,
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When the Neumann boundary condition is at the other end of the domain, j = N ,

the modified polynomial, derivative and weights are found to be

ĥj(η) = hj(η) +
4

N(N + 1)LN(ηj)(−1 + ηj)
h0(η), 0 ≤ j ≤ N − 1,

and

d̂ij = dij +
4

N(N + 1)LN (ηj)(−1 + ηj)
di0, 0 ≤ j ≤ N − 1,

and

ŵj = wj +
4

N(N + 1)LN(ηj)(−1 + ηj)
w0, 0 ≤ j ≤ N − 1.

3.7 The Discrete Equations

The discrete equation for a single collocation point (k, l) can be found by inserting

the appropriate test function into summation expressions similar to (3.51). This

particular discretized term yields

N
∑

m=0

N
∑

n=0

∂y

∂η mn

N
∑

i=0

N
∑

j=0

uk
ijh

′

i(ξm)hj(ηn)h̃k(ξm)h̃l(ηn)
|det(J)mn|
det(J)mn

wmwn, k, l = 1, .., N−1.

(3.61)

This can be expressed as a matrix vector product

Mk
Nuk

N =





































m11,00 . . m11,ij . . m11,NN

. . . . . . .

. . . . . . .
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. . . . . . .

. . . . . . .
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


















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





























uk
00

.

.

uk
ij

.

.

uk
NN





































, (3.62)

where mkl,ij is

mkl,ij =

N
∑

m=0

N
∑

n=0

h′

i(ξm)hj(ηn)h̃k(ξm)h̃l(ηn)
∂y

∂η mn

|det(J)mn|
det(J)mn

wmwn. (3.63)
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By making use of the identity of the Lagrangian interpolant that hj(ηn) = δjn, this

may be simplified to

mkl,ij =
N
∑

m=0

h′

i(ξm)h̃k(ξm)h̃l(ηj)
∂y

∂η mj

|det(J)mj|
det(J)mj

wmwj. (3.64)

When this spectral element discretization is applied to all the terms in the weak

formulation of the continuity equation using test functions in the pressure space

(3.37) the resulting equation is

Dk
Nuk

N = 0. (3.65)

These discrete elemental matrices need to be assembled over all elements. This pro-

vides the choice of continuous or discontinuous operators. The velocities are always

chosen to be continuous, which means that discrete equations at coinciding colloca-

tion points of adjacent elements are added together and averaged over the multiplicity

of the collocation point. After the element assembly, the matrix vector product is

written as

DNuN . (3.66)

3.7.1 Extra terms using the modified interpolant

Although the integration rule that will be used in conjuntion with the modified in-

terpolant is the same as in the original spectral element formulation, it contributes

an extra term to the spectral operators in the discrete equations. The same term is

evaluated as in (3.63), with an axis of symmetry located at the element boundary

at η = −1, corresponding to j = 0. The velocity component u in the ξ-direction is

subject to a zero Neumann boundary condition. The discrete sum after application

of the Gauss-Lobatto integration is now

N
∑

m=0

N
∑

n=0

∂y

∂η mn

N
∑

i=0

N
∑

j=1

uk
ijh

′

i(ξm)ĥj(ηn)q(ξm, ηn)
|det(J)mn|
det(J)mn

wmwn, (3.67)
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which can be compared to the discrete sum (3.51) when the original interpolant. Note

that the size of the problem is slightly decreased now, since there are no contributions

on the axis of symmetry, where j = 0. The term mkl,ij is now

mkl,ij =

N
∑

m=0

N
∑

n=0

h′

i(ξm)ĥj(ηn)h̃k(ξm)h̃l(ηn)
∂y

∂η mn

|det(J)mn|
det(J)mn

wmwn, (3.68)

but since ĥl(η0) 6= 1, the equivalent of (3.64) becomes

mkl,ij =
N
∑

m=0

h′

i(ξm)h̃k(ξm)h̃l(ηj)
∂y

∂η mj

|det(J)mj|
det(J)mj

wmwj+

N
∑

m=0

h′

i(ξm)ĥj(η0)h̃k(ξm)h̃l(η0)
∂y

∂η m0

|det(J)m0|
det(J)m0

wmw0.

(3.69)

The second summation is not present after discretization with the original Lagrange

interpolant, which resulted in the expression (3.64). In section 5.4 the efficiency of the

modified interpolant will be tested against calculations using the original interpolant.

3.7.2 The coupled equations

When the spectral element discretization is applied to all the equations in the weak

formulation of the coupled set of equations (3.33), the following discrete equations

are retrieved

DNun+1
N = 0,

(MlCN + βEN)un+1
N − DT

Npn+1
N + BNτ n+1

N = gN , (3.70)

ClANτ n+1
N − (1 − β)BT

Nun+1
N = hN ,

where DN and BN are the discrete divergence operators acting on velocity and stress,

respectively, DT
N and BT

N are gradient operators acting on pressure and velocity, EN

is the discrete Laplace operator, CN and AN are the discrete velocity and stress mass

matrices, and gN and hN denote the discrete forms of the right-hand sides of (3.33).
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3.7.3 The uncoupled equations

Following the same procedure and using the same discrete operators as for the coupled

equations, the discrete form of the uncoupled set of field equations (3.27)-(3.28) is

DNun+1
N = 0,

(MlCN + βEN)un+1
N − DT

Npn+1
N = gN − BNτ n

N . (3.71)

The discretized form of the constitutive equation (3.29) reads

SNτ n+1
N − (1 − β)BT

Nun+1
N = hN , (3.72)

in which SN is the non-symmetric discrete operator that contains all the terms in

the left-hand side of the constitutive equation (3.29). The right-hand side hN is the

discrete form of (3.31).
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Chapter 4

Numerical Algorithm

4.1 Introduction

In this chapter the algorithm that is used to solve the discretized equations is de-

scribed. The nodes in the spectral element mesh need to be numbered conveniently

(see section 4.2) such that the discrete operators can be set up and solved efficiently

by using iterative inversion methods (see section 4.3). The preconditioners that are

used in these iterative methods are described in section 4.4. To speed up the calcu-

lations the Schur complement method has been implemented that reduces the size

of the operators that need to be inverted. This method is presented in section 4.5.

The zero volume of pressure condition that is used to obtain a better conditioning

of the Uzawa operator, is proposed in section 4.6. When using the uncoupled equa-

tions, upwinding techniques for the stresses can be adopted. The most recent of these

methods, the Locally Upwinded Spectral Technique (LUST) due to Owens et al. [39],

is presented in the last section 4.7.
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4.2 Node Numbering

A subroutine has been developed that can read mesh files that were created using

Gambit, a widely available meshing software package provided with the commercial

Fluent code. In Gambit meshes are easy to create using a graphical user interface.

Only the spectral elements need to be created and element edges can be assigned

with a certain boundary type, which makes it possible to incorporate boundary con-

ditions. The mesh and boundary types are written as output to a so-called neutral

file. A neutral file starts by providing a list of the vertices of the elements, with their

physical coordinates. It then defines the elements using four vertices, always ordered

anti-clockwise. The end of the neutral file contains a list of the boundary types.

Given with each boundary type is a list of edges of elements associated to that type.

The nodes in the Gauss-Lobatto-Legendre (GLL) grid are not defined in the neutral

file. They are only created on the parent element, but their physical coordinates can

be found through the transfinite mapping described in section 3.5.1. The GLL nodes

need to be numbered both locally on the spectral element level, and globally on the

whole of the geometry. A convenient local numbering is nessecary since most opera-

tions can be performed on the elemental level. Nodes on the element boundaries that

are shared by other elements, are characterized by more than one local number. The

number of elements that share one node is called the multiplicity M of this node, and

so there are M different equations associated to this particular node. When solutions

need to be continuous over element boundaries, these equations are added together,

and a global node numbering is needed to provide this coupling between the elements.

The Schur complement method that is described in section 4.5 is based on a certain

global numbering of the nodes. It is essential for this method to function well that

the boundary nodes are easily separated from the internal GLL nodes, and the global
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nodal numbering can provide just that. To find a global node number from a local

number and vice-versa, a mapping function provides the one-to-many mapping from

the global to the local numbering and a many-to-one mapping in the reverse direction.

Both the local and the global numbering depend on the neutral file. In the local

numbering, the origin of the element, i.e. where i = 0 and j = 0, is placed at the

first vertex of the element under consideration. Even in geometries consisting of only

rectangular elements, the first vertex is randomly chosen, and so the origins of the

local element numbering is not necessarily the same in every element. In Fig. 4.1

for example, element 1 has its origin in the bottom left corner, whereas the origin of

element 2 is top left. For the local numbering, a quick and convenient mapping from

the discrete coordinates 0 ≤ i, j ≤ N is given by the following relation

m = i + j(N + 1). (4.1)

The numbering m contains (N + 1)2 entries, ranging from 0 ≤ m ≤ (N + 1)2 − 1.

In Fig. 4.1 the local numbering m is presented for two adjacent elements, using an

approximation order N = 4. The figure also represents the fact that the origin of

the numbering is random, and that as a result of this an edge of a certain spectral

element, can share any other edge of the adjacent element. In this figure edge number

2 of element 1 is shared by edge number 1 of element 2.

The global numbering depends on the neutral file since the first few nodes in the

global numbering are the vertices of the elements as numbered in the file. Fig. 4.2

shows that these six vertices are numbered first, followed by the nodes on the element

boundaries and last the inner nodes are numbered. Node numbers 2, 5, 10, 11 and

12 have a multiplicity M = 2 but are characterized by only one global number.
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Figure 4.1: Local numbering m in neighbouring elements.
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Figure 4.2: Global numbering m in neighbouring elements.

4.3 Solving the Discretized Equations

The algorithms are set up in such a way that there is no need to explicitly construct

the discrete matrices. This results in a low memory usage and therefore relatively

large problems may be calculated. In this light, the choice of iterative methods to

invert the discrete operators is made. In the process of inversion, only matrix-vector

multiplications have to be performed. As opposed to direct methods, there is no need

to store the matrix. Section 4.3.1 shows the operators that need to be inverted, and

section 4.3.2 describes how iterative methods can be applied to invert these operators.
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4.3.1 Discrete operators

The form of the discrete operators that need to be inverted in order to solve the

system of discrete equations, depends on the temporal discretization.

The coupled equations

Combining the discrete momentum and constitutive equations from the set of coupled

equations (3.70) yields

−DT
Npn+1

N + HNun+1
N = gN − 1

Cl
BNA−1

N hN , (4.2)

in which HN is the discrete Helmholtz-like operator, given by

HN =
(1 − β)

Cl
BNA−1

N BT
N + MlCN + βEN . (4.3)

Eliminating the velocity using the discrete continuity equation yields the equation

that the pressure has to satisfy, i.e.

DNH−1
N DT

Npn+1
N = −DNH−1

N

(

gN − 1

Cl
BNA−1

N hN

)

. (4.4)

The operator UN = DNH−1
N DT

N is known as the Uzawa operator. Simplified, the

pressure equation may be written as

UNpn+1
N = bN , (4.5)

where bN is the right-hand side of (4.4). When the pressure equation (4.4) is solved,

the velocity is found from (4.2), after which the stress can be calculated from the dis-

cretized constitutive equation in (3.70). In this process both the Helmholtz operator

and the Uzawa operator need to be inverted. After the stresses have been found, the

values of the stretch λ are calculated separately using using (3.24).
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The uncoupled equations

The Helmholtz operator following from the uncoupled discrete equations (3.71) differs

from (4.3) since the stresses are not implicit in the momentum equation. The discrete

pseudo Laplacian is not included in the Helmholtz operator which now reads

HN = MlCN + βEN . (4.6)

Although it is now based on a different Helmholtz operator, the expression for the

Uzawa operator remains the same, i.e.

UN = DNH−1
N DT

N . (4.7)

Again these Helmholtz and Uzawa operators need to be inverted to compute the

velocity and pressure from the field equations. After this calculation a separate

inversion needs to be performed to find the stress tensor. This inversion involves

the operator SN from the discretized constitutive equation (3.72), which contains

the stress source term, the convection of the stresses, the deformation terms and the

Giesekus term. Finally the the values of the stretch λ are again computed using

(3.24).

4.3.2 Iterative methods

For the inversion of symmetric operators the Preconditioned Conjugate Gradient

(PCG) method is used. In the uncoupled equations, the operator SN is non-symmetric

and in this case the Bi-Conjugate Gradient Stabilized (Bi-CGStab) method [58] is

used. It is chosen over the also frequently used GMRES method [52], since it requires

less storage. To overcome the problem of storage associated with the GMRES method,

the iterations can be restarted after every m iterations. Choosing this parameter

however is rather arbitrary, and by choosing it to be either too small or too large,

the GMRES(m) method might not converge at all or may be very slow.
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The PCG method

To solve the pressure equation (4.7), both the Uzawa operator U = DH−1DT and

the Helmholtz operator H need to be inverted. Since both operators are symmetric,

the preconditioned conjugate gradient (PCG) method can be used, albeit in a nested

structure (see Deville et al. [10], for example). The inversion of the Helmholtz oper-

ator is nested within the inversion of the Uzawa operator.

The standard PCG method for inversion of the problem Up = b, where U is the

Uzawa operator, is given by the following steps

• Use an initial guess p0 for the pressure to calculate the initial residual r0,

r0 = b − Up0.

• Initialize the other PCGM variables,

z0 = P−1
U r0,

q0 = z0,

where PU is the preconditioner for the Uzawa operator.

• The iteration to search for the correct solution vector x is,

αn =
rT

n−1zn−1

qn−1Uqn−1
,

rn = rn−1 − αnUqn−1,

zn = P−1rn,

βn =
rT

nzn

rT
n−1zn−1

,

xn = xn−1 + αnqn−1,

qn = zn + βnqn−1,

which is repeated until a converged residual εU = rT
nzn is reached.
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To calculate Uqn−1 in every iteration, an inner PCGM iteration has to be performed

to find H−1, since H−1DTqn−1 is needed. The inner problem reads

Uqn−1 → H−1DTqn−1 = H−1b̃ = x̃. (4.8)

To find the vector x̃ a nested loop, identical to the one above, has to be called on. A

second preconditioner PH can be used in this process. Obviously, the Uzawa inversion

can only converge if the convergence criterion for the Helmholtz inversion, εH , is

smaller than the convergence criterion for the Uzawa operator, εU . We also found

that this difference should increase with decreasing time step. As an empirical result,

we suggest a Uzawa convergence criterion of εU requires a Helmholtz convergence

criterion of εH < 10−3εU · ∆t.

The Bi-CGStab method

The Bi-CGStab method is a stabilized version of the earlier Bi-Conjugate Gradi-

ent (Bi-CG) method and avoids the irregular convergence patterns associated with

the Bi-CG method. The Bi-CGStab method is used in this thesis to invert the

non-symmetric operator SN that appears in the discretized form of the constitutive

equations The steps in this method are given by

• Use an initial guess x0 for the stresses to calculate the initial residual r0,

r0 = b − Ax0.

• Set r̃ = r0

• The iteration n = 1, 2, ... to search for the correct solution vector x is,

ρn−1 = r̃T rn−1 (method fails if ρn−1 = 0)

if n = 1 then

qn = rn−1
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else

βn−1 =
ρn−1

ρn−2

αn−1

ωn−1

qn = rn−1 + βn−1(qn−1 − ωn−1Aq̂n−1)

endif

q̂n = P−1qn

αn =
ρn−1

r̃T Aq̂n

s = rn−1 − αnAq̂n

if norm of s is small enough set xn = xn−1 + αnq̂n and stop

ŝ = P−1s

ωn =
(Aŝ)T s

(Aŝ)T (Aŝ)

xn = xn−1 + αnq̂n + ωŝ

rn = s − ωnAŝ

which is repeated until a converged residual εS = rT
nzn is reached. P is a

preconditioner.

4.4 Preconditioners

As shown in the previous section, preconditioners can be used to speed up the calcu-

lation. The idea is that a preconditioner is an operator very similar to the operator

that needs to be inverted, but has a known inverse, or properties that make it rela-

tively easy to invert. The preconditioners that have been used to invert each of the

operators is given below. When the identity matrix is used as a preconditioner the

PCG method simplifies to the normal Conjugate Gradient method. In later chapters

the identity matrix will be used as a benchmark to determine the efficiency of the

other preconditioners.
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4.4.1 Preconditioners for the Helmholtz operator

Two preconditioners have been used to invert the Helmholtz operator. The first one

is a so-called overlapping Schwarz preconditioner, the second one is a preconditioner

based on the diagonals of the spectral element operators. Both will be described

below.

The overlapping Schwarz preconditioner

The overlapping Schwarz preconditioner is based on the classical additive Schwarz

method developed by Dryja and Widlund [12]. The preconditioner is based on solu-

tions of similar local problems using finite element approximations on subdomains

that overlap the spectral elements. In a problem with K spectral elements Ωk,

k = 1, . . . , K, these subdomains Ω̃k are the existing spectral elements extended by

a constant number of Gauss-Lobatto Legendre nodes in each direction into adjacent

elements as is shown in Fig. 4.3.

21 3

4 5 6

7 8 9

Figure 4.3: Spectral element mesh, with numbering of the elements, and the subdo-

mains Ω̃1, Ω̃3 and Ω̃8 with an overlap consisting of two nodes on adjacent elements

The square mini-elements are then triangulated to constitute the local finite element

mesh. The local finite element mesh on Ω̃8 for example, is given in Fig. 4.4.
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Figure 4.4: The local finite element mesh on Ω̃8.

Homogeneous Dirichlet conditions are assumed on the boundaries of these extended

subdomains. To provide the global coupling in the preconditioner, the solution on

one extra domain, known as the coarse grid, is needed. The coarse grid, also known

as the skeleton spectral element grid, consists of the vertices of the spectral element

mesh. The coarse grid is also triangulated and this means that every spectral element

is divided into two finite elements. By adding up all contributions, the overlapping

Schwarz preconditioner can be written as

P−1
H = S−1

P = RT
0 A−1

0 R0 +
K
∑

k=1

RT
k A−1

k Rk. (4.9)

The different operators in the preconditioners will be discussed separately:

• The restriction operators Rk restricts a vector which has as many entries as

there are global grid points to a vector with entries for every node on the

element k including overlaps, i.e. the subdomain Ω̃k.

• The operators Ak are the finite element approximations of the Helmholtz op-

erator, on each of the subdomains Ω̃k. Every finite element in this subdomain

is a triangle defined by three GLL nodes. The mapping from the physical

coordinates x = (x, y) to the computational coordinates ξ = (ξ, η) is given by

x(ξ, η) = (1 − ξ − η)x1 + ξx2 + ηx3, (4.10)
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where the corners of the triangle are x1 to x3 and the triangle in computational

space is defined by the corners (ξ, η) = (0, 0), (0, 1), (1, 0). The mapping also

defines the test functions of the finite element discretization

φ1 = 1 − ξ − η, φ2 = ξ, φ3 = η. (4.11)

The finite element mass matrix is a result of the discretization of the weak for-

mulation of a source term of a variable u(x), for example. The weak formulation

of the source term in a finite element Ωe is

∫

Ωe

u(x)φi(x)dxdy =

∫

De

u(ξ)φi(ξ)|det(J)|dξdη, (4.12)

where φi, i = 1, 2, 3, are the test functions defined in (4.11). The determinant

of the Jacobian of the transformation det(J) is constant for triangular elements.

This means that the integrals leading to the finite element mass and stiffness

operators can be evaluated exactly. This is the advantage of using triangles

over quadrilaterals, for which either the Jacobian or the integrals for stiffness

operator have to be approximated.

The finite element mass matrix Mk for the whole subdomain Ω̃k is found by

assembling all the contributions from the finite elements in the subdomain.

The resulting matrix is found to be a banded tridiagonal matrix. In the same

way, the stiffness matrix Ek is the finite element discretization of the weak

formulation of the Laplacian acting on a variable.

The operator Ak can now be written as

Ak =
Re

∆t
Mk +

(

β +
(1 − β)

Cn
l

)

Ek. (4.13)

• The prolongation operators RT
k map the resulting vector with values on the

subdomain back to the global vector, only taking account for the values on the

element k, and disregarding the values on the overlap.
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• When the above operations are performed for each of the subdomains Ω̃k, the

coupling between the subdomains has to be provided by the coarse grid. The

coarse grid operators are R0, A0 and RT
0 . The operator A0 is the finite element

operator (4.13) resulting from the finite element discretization of the coarse

grid problem. The prolongation operator RT
0 interpolates the linear functions

on the coarse mesh to values on every node in the spectral element mesh. The

restriction matrix R0 is its transpose.

Results obtained using this preconditioner will be presented in section 6.7 and 7.6.

Diagonals of spectral element matrices

Since the Helmholtz operator contains a mass matrix, a Laplace operator and a

pseudo Laplacian, it makes sense to build a preconditioner based on these operators.

Local to each element, the diagonals of the discrete mass matrix and the discrete

Laplace operator are used to construct the following preconditioner

PH = MlCN +

(

β +
(1 − β)

Cn
l

)

diag(E ′

N), (4.14)

where E ′

N is the discrete local Laplacian. Results obtained using this preconditioner

will be presented in section 7.6.

4.4.2 Preconditioners for the Uzawa operator

Five different types of preconditioner have been tested for the Uzawa operator.

These are the pressure mass matrix, a preconditioner based on work by Cahouet and

Chabard [6], a preconditioner based on the diagonal of spectral element operators,

a preconditioner based on the full spectral element operators and a preconditioner

based on finite element matrices. Details of these five preconditioners are given below

104



The pressure mass matrix

This is a very simple preconditioner. It is diagonal since it involves the spectral

element mass matrix in pressure space, acting on the pressures. The preconditioner

is given by PU = Mp. Results obtained using this preconditioner will be presented in

sections 6.7 and 7.6.

Cahouet and Chabard based preconditioner

This preconditioner is given by

P−1
U = C−1

P = (
(1 − β)

Cl

+ β)M−1
p + Ml(DC−1DT )−1. (4.15)

The preconditioner that was developed by Cahouet and Chabard [6] is based on the

operator identity

−∇ · (aI − b∇2)−1∇ = (bI − a(∇2)−1)−1, (4.16)

where ∇ · (Re
∆t

I − ∇2)−1∇ arises from the continuous Navier-Stokes equations. The

preconditioner was constructed so that it matches the asymptotic behaviour of the

Uzawa operator in the steady Stokes and high Reynolds number limits. The appro-

priate preconditioner is

P−1
U = M−1

p +
Re

∆t
(DC−1DT )−1 (4.17)

Escriva et al. [13] adopted this strategy for viscoelastic problems. Since the factors

a and b in (4.16) were found to be

a =
Re

∆t
, and b = β +

1 − β
We
∆t

+ 1
, (4.18)

the following preconditioner was proposed

P−1
U =

(

β +
1 − β

We
∆t

+ 1

)

M−1
p +

Re

∆t
(DC−1DT )−1 (4.19)

This preconditioner may be effective in terms of reduction of numbers of iterations.

However, to calculate the preconditioner itself, a further PCG iteration has to be
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used to invert the pseudo Laplacian DC−1DT , which in itself is very time consuming.

Some results obtained using this preconditioner are given in section 6.7.

Diagonals of spectral element matrices

The preconditioner for the Uzawa operator that is used in combination with the XPP

model, is similar to those based on the Cahouet and Chabard preconditioner. It is

constructed to be a linear combination of the pressure mass matrix and the Laplacian

in pressure space. These operators need to be multiplied by appropriate factors for

the preconditioner to be efficient. The preconditioner is given by

P−1
U = (

(1 − β)

Cl
+ β)M−1

p + Mldiag(Ep
N)−1, (4.20)

where Mp is the pressure mass matrix and Ep
N is the discrete local Laplacian in

pressure space. The efficiency of this preconditioner in comparison to others will be

presented in section 7.6.

Full spectral element matrices

Instead of using only the diagonal of the Laplacian in pressure space, the full Lapla-

cian can be used as well. It is stored in an LU-decomposition, and inverted when

needed in the iterative methods. This preconditioner has been found to work very

well when the uncoupled method is used. It reads

PU =
Mp

β
+ MlE

p
N . (4.21)

Some results obtained using this preconditioner will be presented in section 7.6.

Finite element matrices

The nodes in the finite element mesh used for this preconditioner are the inner GLL

nodes of an element Ωk used for the spectral pressure approximation. Again the mesh

is triangulated, but no overlap to other elements is included. The preconditioner is
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based on the finite element mass and stiffness matrices on these local finite element

problems, MFE
k and EFE

k , respectively. It reads

P−1
U =

K
∑

k=1

RT
k

(

MFE
k

β
+ MlE

FE
k

)−1

Rk. (4.22)

The restriction operators Rk now maps a global vector to a vector with the size of the

number the inner GLL nodes of an element Ωk. The preconditioner is stored in an

LU-decomposition, and inverted when needed in the iterative methods. Some results

obtained using this preconditioner will be presented in section 7.6.

4.4.3 Preconditioners for the non-symmetric operator

The non-symmetric operator SN appears in the discretized constitutive equation

(3.72) when the equations are solved uncoupled. In the Bi-CGStab inversion, the

stress mass matrix AN is used as a very simple, yet very efficient preconditioner for

this operator, as will be shown in section 7.6.

4.5 The Schur Complement Method

The Schur complement method can be used to decrease the size of the Helmholtz

problem that needs to be solved iteratively. The problem is split up into two parts.

The first part involves finding the solution vector corresponding to only the nodes on

the element boundaries. In the second part the solution vector on all internal element

nodes are easily calculated from the solution on the boundaries. To achieve this the

Helmholtz operator is arranged using a convenient node numbering as described in

section 4.2.

A visual matrix representation of the rearranged Helmholtz operator is shown in Fig.

4.5. The Helmholtz matrix consists of four blocks. The block HBB is a banded matrix
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in which only the contributions of the influence of the nodes on the boundary of the

elements on other boundary nodes are accounted for. The block HII is the part of the

Helmholtz operator containing the influence of inner element nodes on one another.

Since this influence is restricted to only the element itself, the block HII has a block

structure, and these sub-blocks themselved are banded, allowing for quick solution

using simple Gaussian elimination. All these sub-blocks are stored in an LU decom-

position to speed up this process. Since the Helmholtz operator is symmetric, the

blocks HBI and HIB obey HBI = HT
IB. These two blocks also consist of sub-blocks

in which the influence of inner nodes on boundary nodes and vice versa is represented.

HII

HBB HBI

HIB

bo
un

da
ry

boundary
in

te
rio

r

interior

Figure 4.5: A visual matrix representation of the rearranged Helmholtz operator.

The Helmholtz problem Hx = b can be written as





HBB HBI

HIB HII









xB

xI



 =





bB

bI



 , (4.23)

where the subscript B refers to degrees of freedom on the element boundaries, and

the subscript I refers to degrees of freedom internal to the spectral elements. The

problem can also be written as





HBB − HBIH
−1
II HT

BI 0

HIB HII









xB

xI



 =





bB − HBIH
−1
II bI

bI



 . (4.24)
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The matrix HBB −HBIH
−1
II HT

BI is known as the Schur complement of the Helmholtz

operator and will be denoted as SH . The result of the rearrangement is that instead of

having to solve the full Helmholtz problem, the problem is reduced to one whose the

size is equal to the number of degrees of freedom on the boundaries of the elements,

i.e.

SHxB = bB − HBIH
−1
II bI . (4.25)

After calculation of the solution on the boundaries, the solution inside the elements

is found by solving once

xI = H−1
II

(

bI − HT
BIxB

)

. (4.26)

The Schur method is implemented so that is can be used within the PCG method.

If the Schur complement matrix is statically condensed however, it constitutes a

relatively small problem. For this reason the Schur complement may also be stored

as an LU decomposition which can be inverted when needed. This LU decomposition

is used as a preconditioner in the PCG method. Obviously the PCG method then

takes only one iteration to converge. Although this compromises the use of storage it

constitutes the most efficient algorithm in this thesis, as will be shown in section 7.6.

4.6 The Zero Volume of Pressure Condition

Since the Uzawa operator is only positive semi-definite, problems arise when try-

ing to reach convergence in the PCG method when a tolerance of less than 10−14

is prescribed. The tolerance becomes harder to attain with increasing Weissenberg

number. The indefiniteness of the Uzawa operator can be removed by adding the do-

main integral of the pressure to the right-hand side of the continuity equation. The

Uzawa operator for the modified problem is then positive definite. This modification

of the continuity equation ensures that the pressure approximation has a zero mean

value.
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The zero volume of pressure condition enforces the continuity constraint to be satisfied

at all iterations within the PCG iteration. This is done by replacing the continuity

equation by

∇ · u = −α

∫

Ω

pdΩ, (4.27)

where α is a positive constant. Integrating this equation over Ω and using Green’s

theorem, one can show that
∫

Ω

pdΩ = 0. (4.28)

So this formulation will automatically ensure that p ∈ L2
0(Ω), as well as leading to

a better conditioned problem in the sense that the condition number of the discrete

Uzawa operator is lower than that for the original formulation for a range of values

of α. In evaluating the right-hand side of (4.27) the pressure is integrated over all

elements Ω in the computational domain. After discretization of the integral, the

modified discrete continuity equation is

DNuN = −αQNpN , (4.29)

where QN is a matrix of rank one. This equation replaces the discretized continuity

equation. The pressure equation (4.7) will now be of the form

(UN + αQN )pN = bN . (4.30)

The efficiency of the algorithm has been tested for different values of α, for the channel

flow problem described in Section 6.7. The only difference is that the convergence

criterion for the outer PCG iteration to invert the Uzawa operator is set to 10−20

and the convergence criterion for the inner PCG iteration to invert the Helmholtz

operator is set to 10−24.

Table 4.1 and Fig. 4.6 show that there is an optimum value of α, for the efficiency of

the Uzawa inversion, although the algorithm behaves well for a wide range of values
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Figure 4.6: Average number of iterations in the Uzawa inversion within one time-step

as a function of α.

Table 4.1: Average number of iterations in the Uzawa inversion within one time-step

for different values of α.

α 10−6 10−4 10−3 5 · 10−3 10−2 10−1 100 102

ItU 132.64 119.68 115.54 114.07 114.43 117.79 129.21 147.89

of α. The optimum value of α may vary when either the problem or the convergence

criteria are changed.

4.7 The Locally Upwinded Spectral Technique

In the coupled equations the spaces in which the velocity and the stress are ap-

proximated have to obey a compatibility condition. This condition ensures that the

divergence operator acting on the stresses in velocity space, is the transpose of the

gradient operator acting on the velocities in stress space. Without this compatibil-

ity substitution of the constitutive into the momentum equation on a discrete level

would not be possible. In the uncoupled equations however, this substitution is not
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performed, and the choice of stress space is free. This allows for application of up-

winding methods such as SUPG.

Both SUPG and the Locally Upwinded Spectral Technique (LUST) developed by

Owens et al. [39] will be used. Both are based on the addition of an upwinding term

to the test function for the stress.

In the original weak formulation (3.32) the test function in the constitutive equation

is σ. The modified test function including the upwinding factor reads σ − hu · ∇σ.

The difference between SUPG and LUST lies in different calculation of the shift fac-

tors h. In SUPG this is a global quantity and for spectral element methods it is

common to use h = 1/N 2, where N is the order of the approximating polynomials.

The shift factors in LUST are calculated by considering mini-elements formed by four

GLL nodes inside a spectral element. Let xij be one of the four corners in a mini-

element. For We 6= 0 a coordinate zij = xij − hiju(xij) lies inside the mini-element

at the place where the function

PN+1(x) = (1 − ξ2)L′

N (ξ)(1 − η2)L′

N(η), (4.31)

has a streamline derivative that satisfies

PN+1(zij) + We(u · ∇)PN+1(zij) = 0. (4.32)

By expanding this as a Taylor series about xij an expression is found from which the
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shift factors can be calculated. The expression reads

PN+1(x) − hij(u · ∇)PN+1(x) +
h2

ij

2
(u · ∇)2PN+1(x) −

h3
ij

3!
(u · ∇)3PN+1(x) + ...

+We

(

(u · ∇)PN+1(x) − hij(u · ∇)2PN+1(x) +
h2

ij

2
(u · ∇)3PN+1(x)−

h3
ij

3!
(u · ∇)4PN+1(x) + ...

)

= 0.

(4.33)

In appendix E the derivation of the shift factors from this expression is presented. It

is found that for internal nodes the shift factor is the positive root of the quadratic

equation

2WeN(N + 1)

3

(

u2
ij

1 − ξ2
+

v2
ij

1 − η2

)

h2
ij + hij − 2We = 0. (4.34)

The calculation of the shift factors on the edges of the elements can also be found in

appendix E.

Since the upwinding schemes only change the space that the stresses are approximated

in, the discrete equations in operator notation as presented in 3.71 do not change. The

operators themselves are, of course, different for the standard Galerkin formulation

and for the upwinding methods. In appendix F part of the discretization of the

convective term u · ∇τ is written out to show this difference.
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Chapter 5

Newtonian Computations

5.1 Introduction

As a precursor to the solution of non-Newtonian fluid models, the Stokes and Navier-

Stokes equations are solved to show the validity of the code. For some problems

analytical results can be found that satisfy the Stokes equations, and therefore the

Stokes equations are often used to show mesh convergence of numerical approxima-

tions to a known exact solution, as is shown in section 5.2. Moreover, the Stokes

equations can be solved very cheaply, since no time stepping is required in the so-

lution process. This means that it is possible to find either very accurate results,

i.e. on very fine meshes, or results for problems that would simply be too large to

solve with other models. Some accurate solutions and solutions to large problems are

presented in section 5.3. When new ideas are implemented into numerical schemes,

it is often best to test them on the Stokes equations first. When proven to work in

the Stokes case, they can be extended to non-Newtonian fluid models. The modified

Lagrange polynomial presented in section 3.6 is such an idea that is applied first to

Stokes flow. The results are presented in section 5.4. The results of a study into the

dependence of drag on cylinders and spheres in confined flow, for the Navier-Stokes
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equations, are presented in section 5.5.

5.2 Mesh Convergence

Convergence of the spectral element method with increasing number of elements

and increasing approximating polynomial order will be shown. The problem is the

same as the one considered by Gerritsma and Phillips [17]. On the domain Ω =

(−1, 1) × (−1, 1), we solve the three-field Stokes problem

∇ · u = 0, (5.1)

∇p = ∇ · T + f , (5.2)

T = 2d, (5.3)

subject to prescribed velocity boundary conditions on ∂Ω, for which the exact solution

is given by

p = sin πx sin πy, (5.4)

uT = (− sin 2πx cos 2πy, cos 2πx sin 2πy). (5.5)

The extra-stress solution follows by inserting (5.5) into (5.3). This exact solution

satisfies the Stokes problem in the presence of a body force f which is given by

f =





π cos πx sin πy − 8π2 sin 2πx cos 2πy

π sin πx cos πy + 8π2 cos 2πx sin 2πy



 . (5.6)

The problem is tested for both K = 1 and K = 4 equally sized elements, allowing

the polynomial order N to vary. We denote by E(φ) the L2-norm of the error in the

spectral element approximation of φ, i.e. ‖φ − φN‖2. The errors are given in Tables

5.1 and 5.2 for K = 1 and K = 4, respectively. As displayed in Fig. 5.1, exponential

convergence for all variables is found for this smooth problem. The errors reach

machine precision for modest values of N . Note that the performance is comparable

to that obtained in [17].
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Figure 5.1: Convergence of the L2 norms of the error in u, τxx and τxy with spectral

refinement for K = 1 (left) and K = 4 (right).

Table 5.1: Convergence of the errors in u, τxx and τxy, with increasing approximation

order N , for K = 1.

N E(u) E(τxx) E(τxy)

4 1.593E + 00 2.608E + 01 1.483E + 01

6 1.012E − 01 1.296E + 01 2.377E + 00

8 1.423E − 02 2.547E + 00 7.788E − 01

10 1.368E − 03 3.356E − 01 9.466E − 02

12 7.421E − 05 2.886E − 02 7.006E − 03

14 2.941E − 06 1.732E − 03 3.680E − 04

16 9.086E − 08 7.687E − 05 1.451E − 05

18 2.253E − 09 2.633E − 06 4.461E − 07

20 4.590E − 11 7.177E − 08 1.102E − 08

22 7.829E − 13 1.596E − 09 2.240E − 10

24 1.256E − 14 2.948E − 11 3.808E − 12

5.3 Stokes Flow

In this thesis the flow of different types of fluid will be considered in three differ-

ent geometries. The first is flow through a planar channel, giving rise to what is

known as Poiseuille flow. The second is the flow past a cylinder. Finally, we con-

sider flow through a contraction-expansion geometry. The last two are examples of
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Table 5.2: Convergence of the errors in u, τxx and τxy, with increasing approximation

order N , for K = 4.

N E(u) E(τxx) E(τxy)

4 1.616E − 02 5.093E + 00 1.173E + 00

6 1.342E − 03 4.532E − 01 1.036E − 01

8 3.290E − 05 2.173E − 02 3.984E − 03

10 5.390E − 07 6.192E − 04 9.475E − 05

12 6.428E − 09 1.218E − 05 1.553E − 06

14 5.866E − 11 1.695E − 07 1.868E − 08

16 4.242E − 13 1.778E − 09 1.723E − 10

18 3.706E − 15 1.455E − 11 1.256E − 12

complex flows. All three problems are symmetric, and therefore only the half do-

main needs to be solved. In Cartesian coordinates (x, y), the plane of symmetry will

be assumed on y = 0. In the cylindrical polar coordinate system (r, θ, z), the line

r = 0 represents the axis of symmetry, the coordinate z is in axial direction, and θ is

the azimuthal coordinate. The three geometries together with characteristic length

scales are shown in Fig. 5.2. Note that in the cylinder problem there is a discon-

tinuity in the boundary conditions at the intersection of the symmetry plane with

the cylinder. This discontinuity is not present in the contraction expansion problem.

In these geometries the steady three-field Stokes problem is solved in the Cartesian

coordinate system. The equations read

∇ · u = 0, (5.7)

∇p = ∇ · T + f , (5.8)

T = 2d, (5.9)
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Figure 5.2: The geometry of the channel flow, flow past a cylinder or sphere and flow

through a contraction-expansion.

and are subject to the Cartesian boundary conditions

u = 0, v = 0 on all solid walls, (5.10)

u = uc

(

1 − (y/h)2
)

, v = 0 at inflow and outflow, (5.11)

∂u

∂y
= 0, v = 0 on the plane of symmetry, (5.12)

where uc is the velocity on the plane of symmetry. The solution of the channel flow

problem can be calculated exactly and it is given in Cartesian coordinates by

p = C − 2uc

h2
x, u =





uc (1 − (y/h)2)

0



 , τ =





0 −2uc

h2 y

−2uc

h2 y 0



 , (5.13)

where C is an arbitrary constant.

The cylinder problem is characterized by a channel half-width of h = 2, and the ratio

of the radius of the cylinder to the half width of the channel is R/h = 0.5. The
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inflow and outflow lengths are both taken as Li = Lo = 25. The solution is computed

using the mesh shown in Fig. 5.3. There are K = 20 elements and the degree of the

spectral approximation is N = 7.

Figure 5.3: Spectral element mesh for the cylinder problem, with the spectral elements

printed bold.

The non-dimensional drag on the cylinder is computed using the expression

F = 2

∫ π

0

{

(−p + 2β
∂u

∂x
+ τxx) cos θ + (β(

∂v

∂x
+

∂u

∂y
) + τxy) sin θ

}

dθ, (5.14)

where F has been made dimensionless with µtU . Fig. 5.4 shows the convergence

of the drag with increasing mesh resolution. The error E in computing the drag

is calculated relative to an approximation obtained on a fine mesh (N = 15), i.e.

E = |FN=15 − FN |. The total number of GLL nodes on the spectral element mesh

is with N = 15 is 4737. The value of the drag in the Navier-Stokes problem is

compared to a result generated by Hulsen et al. [24] on a finite element mesh with

16737 nodal points. For a Reynolds number of Re = 0.01, they found the drag to be

F = 132.3584, which compares favourably against our value of F = 132.3507.

The contraction expansion geometry is characterized by a contraction ratio h/hi = 4,

and the radius of the rounded corners at the contraction expansion is R = h/8. The

inflow and outflow lengths are Li = Lo = 20. The mesh given in Fig. 5.5 has K = 30

elements and an approximation order N = 8.

Figs. 5.6 show contour plots of pressure, velocities, stresses and streamfunction
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Figure 5.4: Convergence of the error in the drag, relative to the drag at N = 15, with

increasing order of approximation N .

Figure 5.5: Spectral element mesh for the contraction expansion problem, with the

spectral elements printed bold.

around the contraction-expansion. A polynomial order of N = 8 is used to find

these results, but they are interpolated to a finer mesh with Nf = 20.
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Figure 5.6: Contour plots of the velocities, pressure and stresses for the contraction

expansion problem. The angle θ is defined in the plots of the stresses.

Maxima and minima of the stresses occur at the rounded contraction. The semi-circle

that describes the geometry of this contraction is characterized using the angle θ that
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is defined in the contour plots of the stresses in Fig. 5.6. Using this coordinate, the

stresses are plotted along the semi-circle, see Fig. 5.7
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Figure 5.7: The components of the stress as a function of θ plotted around the semi-

circular contraction.

The flow rate for this contraction expansion problem is 8/3. So if we let the stream-

function be zero on the upper wall, then the streamfunction will be Ψ = 8/3 at the

axis of symmetry. The only negative values of the streamfunction occur in the recir-

culation areas in the salient corners of the geometries. A contour plot of the stream

function Ψ is shown in Fig. 5.8.
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0.000 -0.001 -0.001 0.000Ψ

Figure 5.8: Contour plots of the stream function Ψ around the contraction expansion

Mesh convergence is demonstrated by monitoring the minimum value of the stream-

function. On the finest mesh with N = 12, the minimum value is Ψm = −1.947 ·10−3.

Relative to this the error on coarser meshes is computed as E = |ΨN=12
m − ΨN

m|. The

convergence plot is shown in Fig. 5.9.
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Figure 5.9: Mesh convergence of the error E = |ΨN=12
m −ΨN

m| in the stream function.

5.4 The Modified Lagrange Interpolant

To answer the question if the smaller discrete problem outweighs the disadvantage of

having to calculate the extra terms in the discrete operators, we test the efficiency

of the modified interpolant compared to the original interpolant by solving flow past

a cylinder in a channel, and the equivalent axisymmetric problem, the flow past a

sphere in a tube. The mesh is presented in Fig. 5.10. The ratio of the channel height

to the radius of the cylinder or sphere is h/R = 2, inflow and outflow lengths are 5R.

Figure 5.10: Spectral element mesh for flow past a cylinder in a channel with K = 5

and N = 11.

By monitoring the drag on the cylinder and sphere, we are able to demonstrate mesh

convergence and to comment on the accuracy of both methods.
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In Tables 5.3 and 5.4 the number of iterations needed to invert the Uzawa operator

arising in the discrete problem, is given for an increasing order of approximation.

The Helmholtz operator needs to be inverted in every single iteration of the Uzawa

inversion. The average number of iterations of the Helmholtz operator is also given.

Obviously, the number of Uzawa inversions times the average number of Helmholtz

is a measure of the efficiency of the methods. The total time for the inversion of

the Uzawa operator is also given. The calculations are performed on a Linux PC,

Pentium 4 (2.4GHz, 512kB) with 256 MB internal memory.

Table 5.3: Number of iterations and time needed to invert operators for the cylinder

problem, using the original and modified interpolants.

N Uzawa iterations Helmholtz iterations Time(s) for one Uzawa inversion

Original Modified Original Modified Original Modified

6 50 50 106.46 95.22 0.043 0.046

7 67 67 129.54 116.78 0.074 0.081

8 81 80 156.10 143.81 0.135 0.154

9 96 95 182.16 168.18 0.217 0.252

10 111 107 214.01 200.79 0.341 0.402

11 132 130 240.28 225.19 0.510 0.597

12 147 144 277.23 259.89 0.764 0.906

From these tables it can be concluded that the modified interpolant is a more ef-

ficient way of solving problems that include an axis of symmetry. The number of

Uzawa iterations remains the same since the problem is still the same size on the

pressure grid, which only comprises the internal nodes of the spectral elements. The

Helmholtz operator however is smaller, and this is reflected in a lower number of

iterations needed for the inversion. Although the total number of iterations is always
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Table 5.4: Number of iterations and time needed to invert operators for the sphere

problem, using the original and modified interpolants.

N Uzawa iterations Helmholtz iterations Time(s) for one Uzawa inversion

Original Modified Original Modified Original Modified

6 101 103 288.75 163.77 0.100 0.068

7 164 163 382.47 215.60 0.183 0.127

8 239 239 474.25 270.55 0.332 0.239

9 320 318 572.11 329.92 0.548 0.401

10 405 405 682.64 397.87 0.844 0.632

11 542 541 775.53 458.48 1.258 0.956

12 678 679 884.52 533.37 1.858 1.470

lower for the modified interpolant, the calculation time shows that the method is

not efficient for Cartesian problems with a plane of symmetry rather than an axis

of symmetry. This may be explained by the fact that for Cartesian problems, there

are no zero-rows and columns in the discrete operators, as is the case in axisym-

metric problems. This reflects the fact that the modified interpolant increases the

well-posedness of the discrete system of equations for axisymmetric problems, but not

neccesarily for Cartesian problems. With increasing polynomial order, the difference

in efficiency appears to decrease. This is, of course, because a smaller percentage of

the total number of nodes is located on the axis of symmetry.

Table 5.5 shows the drag on the cylinder and sphere with mesh refinement. The

value of the drag for the cylinder on the finest mesh (N = 12) is 132.3575 calculated

with the original interpolant or 132.3576 using the modified interpolant. These values

compare to the value of 132.3584 found by Hulsen et al. [24] and a value of 132.3507,

found by Van Os and Phillips [59] on a different mesh. Apart from mesh convergence
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Table 5.5: Calculated drag on cylinder with increasing mesh size, for the original and

the modified interpolant.

N Cylinder drag Sphere drag

Original Modified Original Modified

6 132.221547 132.222540 44.9665300 44.9667043

7 132.409436 132.410144 45.0168664 45.0170450

8 132.357527 132.358018 44.9743815 44.9745025

9 132.362405 132.362749 44.9665990 44.9666721

10 132.359743 132.360001 44.9614268 44.9614748

11 132.358194 132.358392 44.9591513 44.9591860

12 132.357463 132.357620 44.9582976 44.9583229

the table also shows that both interpolants appear to converge to the same value

for drag. The mesh convergence of the drag on cylinder and sphere is also shown

in Fig. 5.11, for both interpolants. From Table 5.5 is may also be concluded that

the values of the drag, computed using the different interpolants, converge towards

the same value with mesh refinement. This can also be seen in Fig. 5.12 in which

the convergence of the difference between the computed values for drag using both

interpolants is depicted for both the cylinder and sphere problems.

5.5 Navier-Stokes Equations

The solution of the Navier-Stokes equations will be presented for two problems: plane

Poiseuille channel flow and flow past a cylinder that is asymmetrically positioned in

a channel. Boundary conditions for these problems are either given by steady state

solutions, or by transient start-up of the flow.
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Figure 5.11: Convergence of the drag with mesh refinement for the original interpolant

(left) and the modified interpolant(right).
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Figure 5.12: Convergence to the same value of drag, computed with the original and

modified interpolants.

The steady conditions consist of no-slip conditions on all non-penetratable walls and

a parabolic velocity profile on the inflow and outflow of the channel. Inside the do-

main, all initial conditions are set to zero.

Transient boundary conditions comprise zero initial conditions, with no-slip boundary

conditions on all walls. The flow is driven by imposing a constant pressure gradient

∂p/∂x. This induces developing velocity and stress profiles in time. This develop-

ing start-up of the channel flow is calculated by solving a 1D problem. The solutions

to these 1D problems can be used as transient boundary conditions for the 2D domain.
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When steady boundary conditions are used, there is no physical interpretation pos-

sible for the way the flow reaches steady state. By using transient start-up boundary

conditions, however, the flow may be seen as transient flow behaviour after a pump

induces a certain pressure difference that drives the flow.

5.5.1 1D calculations

The Navier-Stokes equations for the start-up of Poiseuille flow in the x-direction can

be found by neglecting all derivatives of velocity and stress with respect to x, and by

setting the cross-stream velocity, v, to zero. The equations then read

Re
∂u

∂t
= −∂p

∂x
+

∂Txy

∂y
, (5.15)

Txy =
∂u

∂y
. (5.16)

When the pressure gradient ∂p/∂x is given, the start-up of the channel flow to the

fully developed parabolic profile can be calculated.

The transient start-up has been calculated for a channel with walls at y = 0 and

y = 1, and a given pressure gradient of ∂p/∂x = −8, for a Reynolds number Re = 1.

Two equally sized elements are used in the cross-stream direction, with an approxi-

mation order N = 10. The value of the time step is ∆t = 10−3.

The development of the velocity and the shear stress profiles is shown in Figs. 5.13

and 5.14, respectively. Note that at intermediate times, the velocity profile is not

parabolic, and the shear stress is not a straight line. This confirms the need for a

high-order approximation for the transient problem.
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Figure 5.13: Velocity profile at intermediate time levels for the start-up of channel

flow, Re = 1.
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Figure 5.14: Shear stress profile at intermediate time levels in start up of channel

flow, Re = 1.

5.5.2 2D-calculations

For 2D calculations the 1D solutions obtained in the previous subsection can be used

as boundary conditions on the inflow and the outflow of the domain. This will be
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done for the Poiseuille flow through a planar channel. For flow past a cylinder, steady

boundary conditions have been used as well.

Poiseuille flow

The transient start-up profiles are used as boundary conditions to the 2D channel flow

problem. The 2D mesh contains four equally sized elements, with Ky = 2 and Kx = 2

elements in the vertical and horizontal directions, respectively. The approximation

order is N = 10. The global timestep is ∆t = 10−2. The OIFS2/AB2 temporal

scheme is used to approximate the convection of the velocities, and is characterized

by M = 8, the number of RK4 iterations within one time step.

The boundary conditions calculated from the 1D problem are compared to the so-

lution inside the domain at the penultimate vertical grid line in the Gauss-Lobatto-

Legendre grid, i.e. one before the outflow. The comparison is made on the basis of

the value of the velocity at the centre line of the channel and the value of the shear

stress on the lower wall. Fig. 5.15 shows the nodes A and B where the velocity is

monitored, and the nodes C and D where the shear stress is monitored.

A
B

D
C

Figure 5.15: The nodes where the velocity component u and the shear stress τxy are

monitored, on a mesh with Kx = 2, Ky = 2 and N = 4.

In Fig. 5.16 the values of velocity and shear stress are plotted against the time for

Re = 1, and in Fig. 5.17 for Re = 10. Note that the only visible change when in-

creasing the Reynolds number is that the time to steady state increases by the same

order of magnitude.
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flow, for Re = 1.
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Figure 5.17: Velocity at y = 1/2 and shear stress at y = 0, in start up of channel

flow, for Re = 10.

Flow past a confined cylinder

The flow of a Newtonian fluid around a cylinder placed in a channel will now be

studied. The full problem is solved now instead of the half problem with a plane of

symmetry. The same notations is used as in Fig. 5.2, and the ratio of the channel

half height h to the radius of the cylinder is h/R = 2. The inflow length is Li = 20,

and the outflow length Lo = 40. The coordinates of the centre of the cylinder are

given by (xc, yc), where yc = 0 corresponds to the middle of the channel. The cylinder
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can be moved in the vertical direction. Geometric restrictions mean that yc is in the

range of −R ≤ yc ≤ R.

The full mesh contains 10 elements, distributed as shown in Fig. 5.18. The shape

of the mesh depends on the positioning of the cylinder. The higher the cylinder is

placed in the channel, the skewer the two elements above the cylinder become. Fig.

5.19 shows how the shape of the elements around the cylinder is changed to reduce

the skewness.

Figure 5.18: Mesh for the flow around a cylinder.

Figure 5.19: Zoom in at the mesh around the cylinder, for yc = R/4, yc = R/2 and

yc = 3R/4.

For the Stokes problem mesh convergence is studied again. The dependence of the

drag on p-refinement for differently positioned cylinders is shown in Table 5.6. An

important observation is that the drag converges to a similar value as presented in

Table 5.5 for the half problem with a plane of symmetry. Since the Stokes problem

does not contain a time derivative, steady boundary conditions are used.

For the Navier-Stokes problem, a mesh refinement test is performed as well. At a

Reynolds number of Re = 10, the influence of p-refinement is shown in Table 5.7 for
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Table 5.6: Calculated drag on cylinder at different positions yc for the Stokes problem.

Convergence with p-type mesh refinement.

N Drag, yc = 0 Drag, yc = R/4 Drag, yc = R/2 Drag, yc = 3R/4

6 132.7529 121.1758 96.0518 71.3862

7 132.5407 120.9789 95.8872 71.2481

8 132.4331 120.8840 95.8126 71.1900

9 132.3849 120.8448 95.7830 71.1675

10 132.3667 120.8308 95.7725 71.1590

11 132.3603 120.8261 95.7689 71.1560

12 132.3583 120.8247 95.7678 71.1552

Table 5.7: Convergence of the calculated drag on cylinder at Re = 10, with p-type

mesh refinement.

N Drag at yc = 0

5 137.0150

6 137.3025

7 137.4669

8 137.4580

9 137.3735

10 137.3083

11 137.2709

12 137.2519

the centrally placed cylinder. The time step used in these calculations is ∆t = 10−2,

and the boundary conditions are steady. The OIFS2/AB2 temporal scheme, with

M = 8 RK4 iterations per time step, is used to approximate the convection term.

The simulation is terminated when the L2 norms of the velocities and the stresses is
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smaller than 10−8, where the L2 norms are defined by

||∆u||L2 =
[∫

Ω
|un+1 − un|2 + |vn+1 − vn|2dΩ

]1/2
, (5.17)

||∆τ ||L2 =
[∫

Ω
|τn+1

xx − τn
xx|2 + |τn+1

yy − τn
yy|2 + 2|τn+1

xy − τn
xy|2dΩ

]1/2
. (5.18)

The result for the approximating order N = 10, is repeated with the use of transient

boundary conditions. This is to verify that the two different methods do indeed result

is the same computed drag. In Fig. 5.20 the build up of the drag on the cylinder is

shown as the flow starts up. The transient calculation was stopped at t = 200, at

which point the drag was 137.30820 which is indeed in agreement with the value of

137.30825 calculated using the steady boundary conditions.

time

dr
ag
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Figure 5.20: The evolution of drag on a centrally positioned cylinder in a channel.

Next the influence of the choice of time step on the solution is shown by computing

the drag with time steps of 10−1, 10−3 and 10−4. Steady boundary conditions are

again applied. Table 5.8 shows that the drag differ less than 0.001% for these choices

of the time step. The computation with a time step of ∆t = 10−1 failed to converge.

For the cylinder placed at yc = 0, i.e. in the middle of the channel, the influence of
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Table 5.8: Calculated drag on cylinder for different values of the time step at Re = 10.

∆t Drag at yc = 0

10−1 -

10−2 137.30825

10−3 137.30782

10−4 137.30815

the Reynolds number on the solution is computed. For Reynolds numbers of 0, 5, 10,

20 and 40, the predicted values of the drag are given in Table 5.9. For the Reynolds

number of Re = 40, contour plots are presented in Figs. 5.21-5.23.

Table 5.9: Calculated drag on cylinder for different values of the Reynolds number.

Re Drag at yc = 0

0 132.3667

1 132.4224

5 133.7008

10 137.3083

20 149.7149

40 185.6382
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Figure 5.21: Contours of the horizontal velocity component u for Re = 40.
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Figure 5.22: Contours of the shear stress τxy for Re = 40.
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Figure 5.23: Contours of the stream function Ψ for Re = 40.

Table 5.10: Calculated drag on cylinder for different vertical positions of the cylinder

at Re = 10.

yc Drag

0 149.7149

0.25 148.8482

0.50 137.4772

0.75 111.3690

With Re = 20 the position of the cylinder is varied, and the influence on the drag is

shown in Table 5.10. Contours of the stream line value Ψ are shown in Fig. 5.24 as

the vertical position of the cylinder is varied. As the cylinder is moved more away

from the centre, the flow around the cylinder is slower and this results in a decrease
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in drag. Although the drag decreases less than one percent when the cylinder place-

ment changes from yc = 0 to yc = 0.25, the recirculation area behind the cylinder

has already disappeared. When the cylinder is placed closer to the wall though, large

recirculation areas form detached from the cylinder on the wall of the channel.

The more commonly observed drag reduction with increasing Reynolds number is

obtained using a non-dimensionalization suitable for situations in which convection

dominates diffusion. In this case the dimensionless momentum equation is

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇ · τ . (5.19)

instead of the dimensionless momentum equation used in the calculations above,

Re

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · τ . (5.20)

Table 5.11 provides the drag on the cylinder generated using both formulations of

the momentum equation, for a range of Reynolds numbers. These calculations were

performed on a mesh with N = 4 and 20 elements as shown in Fig. 5.3.

Table 5.11: Drag force F with varying Reynolds numbers for different non-

dimensionalizations of the momentum equation.

Re drag F for Eq.(5.20) drag F for Eq.(5.19)

10−2 132.3487 9239.6207

10−1 132.3487 960.2873

100 132.4079 132.4079

101 137.5319 50.8827
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Figure 5.24: Contours of the stream function Ψ for Re = 20 for different vertical

positions of the cylinder. From top to bottom the vertical position is yc = 0, yc = 1/4,

yc = 1/2 and yc = 3/4.
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Chapter 6

Prediction of Flow of Polymer

Solutions

6.1 Introduction

The major part of this chapter deals with the Poiseuille flow of Oldroyd B and

UCM fluids through a planar channel. In section 6.2 the analytic solutions that are

available for both the steady and transient start-up of Poiseuille flow are presented.

This transient start-up is then compared to the 1D numerical solutions generated in

section 6.3. In sections 6.4 and 6.5, 2D solutions to the Poiseuille flow are calculated.

Section 6.4 deals with steady flows and section 6.5 deals with the transient start-up

problem. For the steady calculations both the coupled and the uncoupled solver have

been used. It is shown that even in this simple flow, instabilities lead to divergence

of the numerical solution and that very modest maximum attainable Weissenberg

numbers are found. The uncoupled solver in combination with the LUST method

however, increases the stability, and using this scheme results for the flow of an

Oldroyd B fluid past a confined cylinder is presented in section 6.6. In section 6.7

the efficiency of some of the preconditioners described in section 4.4 is demonstrated.
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6.2 Poiseuille Flow in a Planar Channel

The benchmark problem of plane Poiseuille flow in a channel bounded by two parallel

fixed plates has been chosen since an analytical solution exists for both the steady

and transient problems. This enables the accuracy as well as the stability of numer-

ical schemes to be investigated.

The analytical solution for the flow of an Oldroyd B fluid in a planar channel (see

Fig. 6.1) can easily be found at steady state. With all derivatives in the channel

direction (x) set to zero, and the cross channel velocity v = 0, a parabolic velocity

profile for the velocity component, u, is obtained in the form

u(y) = A(y) = 4(1 − y)y. (6.1)

This is valid in a channel of height h = 1 and 0 ≤ y ≤ h, with a maximum centreline

velocity of U = 1. The elastic stresses can now be found by solving the constitutive

equation using the above assumptions. This yields

τxx = 2We(1 − β)(
∂u

∂y
)2 = 2We(1 − β)(A′(y))2, (6.2)

τxy = (1 − β)(
∂u

∂y
) = (1 − β)(A′(y)), (6.3)

τyy = 0. (6.4)

Figure 6.1: Poiseuille flow in a planar channel.

With a constant pressure gradient applied, the analytical solution to the transient

start-up of a channel flow of an Oldroyd B fluid has been derived by Waters and King
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[64] for Re 6= 0. The velocity components of this solution are given by

u(y, t) = U

[

A(y) − 32
∞
∑

n=1

sin(Ny)

N3
exp

(

− αN t

2We

)

GN (t)

]

, (6.5)

v(y, t) = 0, (6.6)

where GN (t) is defined as

GN(t) = cosh

(

βN t

2We

)

+

[

1 + (β − 2)EN 2

βN

]

sinh

(

βN t

2We

)

,

and the other factors are

N = (2n − 1)π,

E =
We

Re
,

αN = 1 + βEN2,

βN = ((1 + βEN 2)2 − 4EN2)1/2.

The stress components are given by

τxx = 2ReCxy(y)

[

A′(y) exp (−t/We) − 32

∞
∑

n=1

cos(Ny)

N2
IN (t)

]

(6.7)

+2ReA′(y)(1 − β)

[

EA′(y) − 32

∞
∑

n=1

cos(Ny)

N2
HN(t)

]

− 64ReA′(y)(1− β)

E

∞
∑

m=1

cos(My)

M2
JM(t)

+
2048Re(1 − β)

E

∞
∑

n,m=1

cos(Ny)

N2

cos(My)

M2
KNM(t) + Cxx(y) exp (−t/We) ,

τxy =
(1 − β)

E

[

EA′(y) − 32

∞
∑

n=1

cos(Ny)

N2
HN(t)

]

+ Cxy(y) exp (−t/We) , (6.8)

τyy = 0, (6.9)

where M = (2m − 1)π, and Cxy and Cxx are time-independent functions defined by

the requirement that τxy and τxx are zero at t = 0. Details of the other coefficients

are given Carew et al. [7].

140



The transient development of the stress can exhibit both overshoots and undershoots

as it evolves toward the steady-state solution. The problem has a smooth solution,

being a pure transient shear flow, with a shear boundary layer at the channel walls

and no shear along the centreline. There are no geometric singularities in the flow.

Here, interest lies solely in determining the quality of the numerical solutions, evolved

over time, and in detecting sensitivity to numerical instability for the algorithms un-

der consideration.

For β = 1/9, the analytical solution displays overshoots and undershoots in the

streamwise velocity component and the stress components, as We is increased from

a value of zero to unity. As We is increased beyond unity, the velocity overshoot in-

creases, whilst the velocity undershoot and stress overshoot/undershoot are damped.

Once We reaches 100 there is no velocity undershoot or stress overshoot/undershoot.

Also of interest is the relative settling times taken for velocity and stress compo-

nents to settle down to their steady-state values. For We < 1, velocity and stress

components take approximately the same time to achieve such states. However, for

We ≥ 1, the normal stress components take longer to attain their steady-state values

as compared with the velocity components and the shear stress. Reproducing these

features is a severe test of the time accuracy of any transient algorithm, given the

different time-scales involved.

6.3 Comparison of 1D Numerical Solutions with

Analytic Solutions

The analytic Waters and King solution is compared to a 1D numerical solution for

the start-up of Poiseuille flow. The height of the channel is h = 1. The mesh

consists of two spectral elements of equal size, with N = 10. The start-up of both
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an Oldroyd B fluid with β = 1/9 and a UCM model is computed. The Reynolds

number and Weissenberg number are both set to unity, and the flow is driven by a

pressure gradient of ∂p/∂x = −8. The timestep in the 1D calculation is ∆t = 10−3.

In Fig. 6.2 the numerical solution is compared to the Waters and King solution for

the Oldroyd B model. Both the velocity and the shear stress and first normal stress

exhibit large overshoots and undershoots before settling to the steady state Poiseuille

flow. Only for the first normal stress τxx does the numerical solution shows slightly

larger values in the overshoot.
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Figure 6.2: Comparison of the velocity approximation at the centre of the channel

and the stress approximation at the channel wall, with the Waters and King solutions,

for an Oldroyd B fluid with β = 1/9, We = 1 and Re = 1.
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Figure 6.3: Comparison of the velocity approximation at the centre of the channel

and the stress approximation at the channel wall, with the Waters and King solutions,

for a UCM fluid with We = 1 and Re = 1.

The same comparison for the UCM model is shown in Fig. 6.3. The overshoots and
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undershoots are much larger for the UCM model, and they also exhibit more discon-

tinuous behaviour then the overshoots and undershoots in the Oldroyd B model. Still

the numerical solution represents the exact solution well in the eyeball norm. Note

that the velocity in the start-up of the Poiseuille flow of a UCM fluid even becomes

negative before settling.
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Figure 6.4: Velocity profile at intermediate time levels in the start-up of channel flow

for an Oldroyd B fluid with β = 1/9, We = 1 and Re = 1.
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Figure 6.5: First normal stress profile at intermediate time levels in the start-up of

channel flow for an Oldroyd B fluid with β = 1/9, We = 1 and Re = 1.

The development of the profiles of velocity and first normal stress are also shown for
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both the Oldroyd B model and the UCM model. Figs. 6.4 to 6.7 show the profiles at

a few time levels. Again this shows that to capture the correct transient behaviour,

a higher order approximating polynomial is necessary. Especially, the intermediate

velocity profiles in Fig. 6.6 call for high order approximation. When the only interest

is in the solution to the steady problem, a second-order approximation will do, since

all the profiles in steady flow are parabolic.
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Figure 6.6: Velocity profile at intermediate time levels in start up of channel flow for

a UCM fluid with We = 1 and Re = 1.

6.4 Steady Channel Flow

To find steady solutions to the Poiseuille flow in a channel, two approaches can be

used. In this section, the fully developed flow is prescribed as a steady boundary

condition. Starting with zero initial conditions, the solution will converge to the

fully developed flow in the whole channel, using a transient algorithm. The tran-

sient development from the initial conditions is in this case only a means of finding

the steady-state solution, and the time dependent start-up of the flow itself has no

physical interpretation. In Section 6.5, the Waters and King solution will be used
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Figure 6.7: First normal stress profile at intermediate time levels in start up of channel

flow for a UCM fluid with We = 1 and Re = 1.

as a transient boundary condition. This time dependent solution may be physically

interpreted as the start-up of Poiseuille flow of an Oldroyd B fluid.

For the steady channel flow, a parabolic profile is used to prescribe the steady ve-

locity boundary condition at both inflow and ouflow. The corresponding extra-stress

profiles are prescribed as boundary conditions only at the inflow of the channel. A

no-slip condition is applied at the walls of the channel y = 0, and y = h. Zero initial

conditions for both velocity and stress are assumed inside the domain.

Both the coupled and uncoupled solvers have been used to solve this problem. An

extensive study of the influence of the different parameters is performed using the

coupled solver. After this, the uncoupled solver is used and the results using different

test functions are compared to the results of the coupled solver.
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6.4.1 Coupled solver

The influence on the maximum attainable Weissenberg numbers of the different time

integration methods, different values of β, N , L, and the number of elements, has

been tested using the coupled solver.

Time integration method of material derivative/deformation terms

For the Oldroyd B and UCM models different time integration methods have been

tested. The following parameters are used: N = 4, K = 1, Re = 0 and Re = 0.1,

with a timestep ∆t = 0.1. The channel length is L = 64, and height h = 1. The

boundary conditions are based on the velocity profile u = −4y(y − 1), y ∈ [0, 1].

The convergence criteria on the residuals of the preconditioned conjugate gradient

loops for the inversion of the Uzawa and Helmholtz operators are set to 10−9 and

10−14 respectively. The convergence criteria ||∆u||L2 and ||∆τ ||L2 norms are set to

10−8. When these criterion are met, the Weissenberg number is increased, according

to

We = We + 0.05 if We ≤ 1 (6.10)

We = We ∗ 1.1 if We > 1 (6.11)

In Table 6.1 the maximum attainable Weissenberg numbers for the Euler/Euler

method and for BDF2/EX2 and OIFS2/AB2 are presented for the UCM model and

for an Oldroyd B model with β = 1/9. The results in this table show that a nonzero

Reynolds number clearly has a stabilizing effect on the calculations for the UCM

model and the Oldroyd B model.

The calculations performed for the UCM model show that a larger maximum Weis-

senberg number can be achieved when a first-order temporal scheme is used rather
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Table 6.1: Maximum attainable Weissenberg numbers for different temporal dis-

cretizations and models, for a one element mesh with N = 4 and L = 64.

Wemax, Re = 0 Wemax, Re = 0.1

UCM Euler/Euler 8.95 17.45

OIFS2/AB2 6.73 8.95

BDF2/EX2 5.05 8.95

Oldroyd B Euler/Euler 28.10 34.00

OIFS2/AB2 28.10 34.00

BDF2/EX2 28.10 34.00

than a second-order scheme. We do not have an explanation for this for the steady

problem at the moment. However, we speculate that it is related to the relative reg-

ularity of the solutions to the UCM and Oldroyd B problems as indeed it is for the

corresponding inertial transient problems.

Time discontinuity in UCM solution

The enormous difference in maximum attainable Weissenberg number for the UCM

and the Oldroyd B models in Table 6.1, using second-order temporal discretization,

may be explained by looking at the convergence of the series (6.5). The rate of

convergence is determined by the asymptotic behaviour of the coefficients as N → ∞

QN(t) =
1

N3
exp

(

−αN t

2E

)

GN(t). (6.12)

In the case of the Oldroyd B model, βE > 0 which means that βN = O(N2) as

N → ∞ and QN(t) = O(N−3) as N → ∞. For the UCM model, βE = 0 and

there are two cases to consider: E > 1/4π2 and E < 1/4π2. When E > 1/4π2 then

βN = O(N) as N → ∞ and is purely imaginary. In this case

QN (t) ∼ N−3

[

2N2E − 1√
4N2E − 1

]

, (6.13)
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which is effectively O(N−2) as N → ∞. When E < 1/4π2, βN is real for N ≤ N ∗,

and imaginary for N > N ∗, for some N∗. So GN(t) is exponential for small N before

oscillations set in and result (6.13) again holds in the limit N → ∞.

The local truncation error of a first-order approximation to ∂u
∂t

is proportional to

∆t sup
∣

∣

∣

∂2u
∂t2

∣

∣

∣
, while that for a second-order approximation is (∆t)2 sup

∣

∣

∣

∂3u
∂t3

∣

∣

∣
. The

asymptotic decay rate of QN (t) for the UCM model suggests that ∂u
∂t

is continuous,

while ∂2u
∂t2

, is discontinuous. Therefore a first-order approximation may be able to

simulate the UCM fluid, while a second-order approximation may fail. The decay

rate for the Oldroyd B model suggests that both approximations may perform well.

Parameter β

Using the Euler/Euler scheme to approximate the material derivative and deforma-

tion terms, the Oldroyd B model has been tested for β = 0 (UCM), β = 1/9 and

β = 0.9. The convergence criteria for ||∆u||L2 and ||∆τ ||L2 are set to 10−8, and for

the inversion of the Helmholtz operator, a preconditioner based on an overlapping

Schwarz method has been used, with an overlap of two nodes. The mesh is defined

by N = 4 and K = 8, with two elements in vertical and four in horizontal direction.

The timestep is ∆t = 0.1, the channel length is L = 64, and the height h = 1, with

a parabolic inflow profile: u = −4y(y − 1), y ∈ [0, 1]. The convergence criteria are

10−9 for the Uzawa loop, and 10−14 for the Helmholtz loop.

In Table 6.2 the maximum attainable Weissenberg numbers for Reynolds numbers of

Re = 0 and Re = 1 are given, with β = 0 (UCM) and β = 1/9 and β = 0.9. The

influence of changes in the Reynolds number and the parameter β is less obvious than

in the results for the one element case which are presented in Table 6.1. A high value

of β however, clearly provides a more stable problem.
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Table 6.2: Maximum attainable Weissenberg numbers for different values of β and

Re, on a mesh whith K = 8, N = 4 and L = 64.

Wemax

Re=0 β = 0 1.77

β = 1/9 1.77

Re=1 β = 0 1.77

β = 1/9 1.77

β = 0.9 3.14

Timestep

For the Oldroyd B model with β = 1/9, Re = 1, and We = 0.5, different values

for the timestep are tested. The other parameters are the same as in Section 6.4.1.

Convergence for the norms of the stresses are shown in Fig. 6.8, for ∆t = 10−1

and ∆t = 10−3. Whereas the convergence of the stress approximation using the

larger time step is predominantly monotonic until machine precision is reached, the

convergence history for the smaller time step is more irregular and is undulatory in

behaviour.

Number of elements and order of polynomial approximation

For the UCM (β = 0) model under the creeping flow assumption (Re = 0), different

values for the number of elements K and the polynomial order N are tested. All

other values are the same as in Section 6.4.1. For one element no Schwarz overlap

based preconditioner is possible, so for the Helmholtz operator for one element, the

identity is used (no preconditioner) in the PCG iteration.

Maximum attainable Weissenberg numbers are given in Table 6.3, for K = 1 with

both N = 4 and N = 8, and K = 8 equally sized element, four in horizontal and
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Figure 6.8: Convergence of norms of stresses for (a) ∆t = 10−1 and (b) ∆t = 10−3,

for an Oldroyd B model with β = 1/9, Re = 1, and We = 0.5, on a mesh whith

K = 8, N = 4 and L = 64.

two in vertical direction, also with both N = 4 and N = 8. The ability of the model

to produce valid results at high Weissenberg numbers decreases with increasing the

mesh resolution.

Table 6.3: Maximum attainable Weissenberg numbers for different polynomial orders

and number of elements, for a UCM model with Re = 0.

Wemax

N = 4 K = 1 7.59

K = 8 1.77

N = 8 K = 1 3.80

K = 8 0.50

Fig. 6.9 shows a plot of ||∆τ ||L2, against the non-dimensional time, for the mesh

with N = 8 and K = 8. Only the last three Weissenberg numbers are plotted. The

maximum attainable Weissenberg number is We = 0.50, and any higher value causes

the solution to diverge.
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Figure 6.9: Convergence plot of ||∆τ ||L2, for a UCM model with Re = 0, on a mesh

with K = 8, N = 8 and L = 64. Only the plots for the highest three Weissenberg

number are shown.

Channel length

For an Oldroyd B model with β = 1/9, with a Reynolds number of Re = 1, different

values for the the length of the channel are tested. All other values are the same as

before in the list in Section 6.4.1.

Table 6.4: Maximum attainable Weissenberg for different channel lengths on a mesh

with K = 8, N = 4, and L = 64, for an Oldroyd B model with β = 1/9, Re = 1.

Channel length Wemax

8 0.25

16 0.45

32 0.90

64 1.77

Maximum attainable Weissenberg numbers are given in Table 6.4. When the length

of the channel is shortened, this maximum Weissenberg number decreases, notably in
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an almost linear fashion. This may represent the same behaviour of decreasing Wemax

with increasing mesh resolution, since a shorter channel is effectively a refinement of

the mesh in the lengthwise direction.

6.4.2 Uncoupled solver

Using the same parameters as before, the Oldroyd B model is now solved using the

uncoupled solver. The only change is the time step. Since in an uncoupled solver,

the CFL condition is lower, the time step needs to be chosen carefully. Here a time

step of 10−2 is used. At the shortest tested channel length L = 8, the mesh is defined

by K = 8 and N = 4. The Oldroyd model is used with β = 1/9, Re = 1.

The LUST method has been tested against the SUPG and the standard Galerkin

method. Table 6.5 shows that using the uncoupled solver instead of the coupled

solver leads to a dramatic improvement on the maximum attainable Weissenberg

number. Both upwinding methods raise Wemax even more, with the LUST method

reaching slightly higher numbers than when SUPG is used.

Table 6.5: Maximum attainable Weissenberg for different numerical methods, for a

channel with L = 8, on a mesh with K = 8, N = 4, for an Oldroyd B model with

β = 1/9, Re = 1.

Solver Wemax

Coupled (Galerkin) 0.25

Uncoupled (Galerkin) 1.05

Uncoupled (SUPG) 1.69

Uncoupled (LUST) 1.86
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6.5 Transient Channel Flow

Solutions to the planar start-up of channel flow of the Oldroyd B model, are calculated

using the Waters and King solution for the start-up of Poiseuille flow as transient

boundary conditions. The velocity solution is used at inflow and outflow, the stress

solution only at inflow. All other initial conditions are zero. All these results for

transient flow have been calculated using the coupled solver.

The performance of the algorithm is shown by solving the transient start-up problem

for an Oldroyd B model with β = 1/9. The Weissenberg and Reynolds numbers are

fixed at We = 1 and Re = 1, the timestep is 10−2, and h = 1. Convergence of the

solution to the exact Waters and King solution is shown in Tables 6.6 to 6.9, for

different values of N , L, Kx and Ky. Here Kx and Ky denote the number of spectral

elements in the lengthwise and cross channel directions, respectively.

From Table 6.6 it can be concluded that at a fixed channel length, increasing Kx

results in poorer convergence behaviour. This is also the case if Kx is kept fixed, and

the channel length is decreased. At a lower approximation order N , Table 6.7 shows

that convergence is reached easier at the same values for Kx and L. This reflects the

findings for the steady channel flow where either a decrease in channel length or an

increase in the value of Kx or N resulted in lower maximum attainable Weissenberg

numbers.

The influence of the number of elements in the cross channel direction, Ky, on the

convergence behaviour is considerably weaker, as can be seen in Tables 6.8 and 6.9.

Although divergence sets in slightly later when Ky = 1 only, no examples have been

found where the choice of Ky influenced whether or not the solution eventually di-

verged. The results in Table 6.9, at a lower approximation order N , again show better
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Table 6.6: Convergence behaviour for varying values of Kx and L, at a fixed value of

N = 6. A converged solution is denoted with a C. If the solution does not converge,

the approximate time at which the solution diverges is given.

Kx × Ky N L = 8 L = 16 L = 32 L = 64

1 × 2 6 C C C C

2 × 2 6 4.10 10.80 C C

3 × 2 6 2.10 5.30 22.00 C

4 × 2 6 1.00 3.50 11.20 C

Table 6.7: Convergence behaviour for varying values of Kx and L, at a fixed value of

N = 4. A converged solution is denoted with a C. If the solution does not converge,

the approximate time at which the solution diverges is given.

Kx × Ky N L = 8 L = 16 L = 32 L = 64

2 × 2 4 12.10 C C C

4 × 2 4 3.00 12.60 C C

6 × 2 4 1.30 5.60 C C

8 × 2 4 0.90 3.00 13.00 C

convergence behaviour than the results at higher N in Table 6.8.

The exact solution that is prescribed at inflow, according to the Waters and King

solution, is compared to the solution that is calculated at the Gauss-Lobatto point

on the penultimate vertical gridline, i.e. one before the outflow of the channel. Fig.

6.10 shows the nodes A and B where the velocity is monitored, and the nodes C and

D where the stresses are monitored.

The time-dependent solutions at these two points are superimposed in Fig. 6.11,
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Table 6.8: Convergence behaviour for varying values of Ky and L, at a fixed value of

N = 6. A converged solution is denoted with a C. If the solution does not converge,

the approximate time at which the solution diverges is given.

Kx × Ky N L = 8 L = 16 L = 32

2 × 1 6 5.90 20.20 C

2 × 2 6 4.10 10.80 C

2 × 3 6 3.90 10.90 C

2 × 4 6 3.90 11.00 C

Table 6.9: Convergence behaviour for varying values of Ky and L, at a fixed value of

N = 4. A converged solution is denoted with a C. If the solution does not converge,

the approximate time at which the solution diverges is given.

Kx × Ky N L = 8 L = 16

2 × 1 4 24.00 C

2 × 2 4 12.10 C

2 × 3 4 11.00 C

2 × 4 4 11.00 C

A
B

D
C

Figure 6.10: The nodes where the velocity component u and the stress components

τxx and τxy are monitored, on a mesh with Kx = 2, Ky = 2 and N = 4.

where Ky = 2, Kx = 4, L = 64 and N = 6. Slight differences in the peak of the time-

dependent solution can be observed. The spectral approximation of τxx overshoots

the first peak in the exact solution by approximately 2%. The spectral approximation
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of u, undershoots the first peak in the exact solution by less than 1%. No such under-

or overshoots are observed in the comparison of the numerical and exact values for

τxy. Apart from these differences, the curves are hardly distinguishable.
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Figure 6.11: Transient solution for a channel with K = 8 elements, with a distribution

Kx = 4, Ky = 2 and N = 6, for We = 1 and Re = 1.

The length of the channel is now halved to L = 32, keeping Ky, Kx and N fixed. As

can be seen in Table 6.6, the solution to this problem diverges at around t = 11.20.

Fig. 6.12 shows this typical divergence behaviour of the numerical solution away from

the exact solution. Although the transient numerical solution seems to follow the

exact solution and to settle down to the steady state solution, dramatic divergence

sets in after a certain number of iterations. With all other parameters fixed this

happens when either the channel is shortened or Kx is increased or N is increased.

All of these actions represent refinement of the mesh in the lengthwise direction.
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Decreasing the timestep might delay the divergence slightly, but does not change the

overall result.
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Figure 6.12: Typical divergence of the numerical solution from the exact solution of

a transient start-up of a channel flow. Divergence at around t = 11.20.

On meshes with Kx = 1, converged solutions can be found for higher Weissenberg

numbers. This seems to suggest that the spatial discretization and, in particular,

the presence of spectral element interfaces in the streamwise direction is partially

responsible for the onset of spurious instabilities. Fiétier [14] showed that mesh

discretization has a strong impact on the location of the eigenvalues of the associated

generalized eigenvalue problem and therefore on numerical stability. This seems to

be in agreement with statements made by Beris and Sureshkumar [56] and Wilson

et al. [65] about the generation of spurious oscillations caused by the inadequate

resolution of the continuous spectrum. Lozinski and Owens observed no limit on
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the critical Weissenberg number when solving this problem using a single spectral

element. However, unlike the numerical simulations of Fiétier and Deville [15] and

those under consideration in the present article, periodic boundary conditions were

applied across the channel. Therefore, it is impossible to make a direct comparison

with this work. However, we should comment that, in the context of spectral methods,

the imposition of periodic boundary conditions generally leads to the attainment of

a higher critical value of the Weissenberg number compared with the imposition of

Dirichlet conditions.
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Figure 6.13: Transient solution for a channel with K = 1 elements, with N = 4, for

We = 10 and Re = 1.

Converged solutions have been obtained for the Oldroyd B model (β = 1/9) for

We = 10 and We = 20 with Re = 1 on a mesh with Kx = 1, Ky = 1, L = 64, N = 4

and ∆t = 10−2. Figs. 6.13 and 6.14 show the Waters and King solution at the points
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Figure 6.14: Transient solution for a channel with K = 1 element, with N = 4, for

We = 20 and Re = 1.

A and B, compared to the numerical solution at points B and D for We = 10 and

We = 20, respectively. A very clear overshoot can be observed for τxx, but the profiles

for u and τxy are hardly distinguishable. The normal stress τxx takes considerably

longer (around a factor of 10 for We = 20) to reach its steady state value compared

with u and τxy and dominates the shear stressin absolute value. The same converged

solutions have been found on meshes with Kx = 1, Ky = 4. Again, the value of Ky

does not seem to play an important role, and negligible difference is observed between

the transient numerical solutions shown in Figs. 6.13 and 6.14 for Ky = 1 and those

obtained using Ky = 4. The same is true for the comparison of solutions obtained

by the first-order Euler/Euler temporal scheme, and the second-order OIFS2/AB2

scheme.
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Finally, we comment on the alternative implicit scheme presented in section 3.3.2 for

solving this problem. No substantial change in the critical value of the Weissenberg

number was observed for either the steady or the transient problem. Fiétier and

Deville [15] observed similar behaviour when a fully implicit unsteady solver was used.

The problem of spurious oscillations in the solution caused by the inadequate spatial

resolution of the continuous spectrum seems to dominate the temporal stability of

explicit and implicit schemes to such an extent that the enhanced stability properties

one would expect of implicit schemes are imperceptible.

6.6 Flow Past a Cylinder

With uncoupled solver and using LUST, the flow past a confined cylinder has been

computed for an Oldroyd B model with a Weissenberg number of We = 0.5. Other

parameters are Re = 1, β = 1/9. The mesh is depicted in Fig. 5.3. It consists of

20 spectral elements, and the approximating polynomial order is N = 7. The time

step that is used is ∆t = 10−2, and the calculations are stopped when the L2-norms

given in (5.17) and (5.18) have both reduced to 10−8. The convergence criteria in the

PCG methods are set to 10−9 for the Uzawa operator and 10−14 for the Helmholtz

operator. The convergence criterion in the Bi-CGStab method for the non symmetric

operator SN is set to 10−12.

The boundary conditions are from the transient Waters and King solution. The de-

velopment of the drag is shown in Fig. 6.15. The computation has been run up till

t = 20 seconds and no instabilities that can cause divergence of the numerical solu-

tion as presented in the previous section have been detected. The final value of the

drag is 115.5426, which has reduced considerably compared to the Newtonian value

of 132.4079.
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Figure 6.15: Drag on cylinder as a function of time in start-up of Poiseuille flow of

an Oldroyd B fluid with β = 1/9, We = 0.5 and Re = 1.

Contour plots of the components of the polymeric stress are shown in Figs. 6.16

to 6.18. Some steep gradients are present in the solution near the upper wall, but

all the maxima and minima of the stresses are found to be on the cylinder. Fig.

6.19 therefore presents the stress components along the plane of symmetry and the

cylinder wall.
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6.7 Results for Different Preconditioners

The performance of some of the different preconditioners described in sections 4.4 is

tested in a coupled solver for steady flow, for different values of N , K, Re and We

for a channel with L = 32 and h = 1. The boundary conditions are based on the

parabolic velocity profile u = −6y(y − 1).

The Euler/Euler temporal scheme is used, with a timestep ∆t = 0.1. The convergence

criteria for the PCG algorithms for the Uzawa and the Helmholtz operators are set to

be 10−12 and 10−16, respectively. The solution is assumed to be converged when the

L2-norm of the difference between two successive velocity and stress approximations

is less than 10−6. These L2-norms are defined by the expressions given in (5.17) and

(5.18).

Summarizing, the parameters that have been used to test the performance of the

preconditioners are (unless otherwise stated): N = 8, K = 4, Re = 1, We = 0.1,

β = 1/9, ∆t = 0.1, L = 32, h = 1. The distribution of the four equally sized elements

is as is depicted in Fig. 6.10.

In Tables 6.10 to 6.13 the efficiency of the various preconditioners is indicated using

three quantities. These are:

• The average number of iterations per time step, ItU , needed to invert the Uzawa

operator.

• The average number of iterations, ItH , needed to invert the Helmholtz operator,

averaged over the total number of Helmholtz inversions. Since the Helmholtz

operator needs to be inverted in every Uzawa iteration, the total number of

Helmholtz inversions equals the number of time steps times the average number
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of Uzawa iterations per time step, ItU .

• The average time to invert the Uzawa operator is given by ∆tU , in seconds.

The computations are run on a Compaq XP1000 workstation.

Table 6.10: Performance of the preconditioners with increasing polynomial order N .

To achieve a converged solution, 28 time steps were needed.

N ItU ItH ∆tU PU PH

4 23.29 21.50 0.411 CP SP

4 31.39 21.18 0.211 M ∗

p SP

4 37.32 22.01 0.258 I SP

4 31.39 31.00 0.111 M ∗

p I

4 37.43 32.40 0.139 I I

8 49.96 36.13 ≈ 80 CP SP

8 76.89 35.25 2.646 M ∗

p SP

8 138.50 36.30 4.874 I SP

8 75.57 141.26 4.016 M ∗

p I

8 137.71 145.16 7.384 I I

12 70.61 47.52 ≈ 1800 CP SP

12 103.18 48.64 13.37 M ∗

p SP

12 231.04 44.95 25.599 I SP

12 103.54 308.41 29.954 M ∗

p I

12 231.64 284.51 62.513 I I

The efficiency of the Cahouet-Chabard based preconditioner CP for the Uzawa op-

erator, is clear in terms of reduction of the number of iterations in the Uzawa PCG

iteration. However, the calculation of this preconditioner, involves the inversion of

the pseudo-Laplacian (DC−1DT )−1. The number of iterations needed for this PCG

inversion increases dramatically with increasing polynomial order, N , and number

of elements, K. This reduces the performance of this preconditioner considerably.

Although the pressure mass matrix M ∗

p does not decrease the number of iterations

as the CP preconditioner does, it is more efficient since it only involves inverting the
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diagonal mass matrix.

Table 6.11: Performance of the preconditioners with increasing number of elements

K. The 4 elements are ordered as in Fig. 6.10, the 8 elements are of equal size, with

Kx = 4 and Ky = 2. A converged solution was obtained in 28 time steps.

K ItU ItH ∆tU PU PH

4 49.96 36.13 ≈ 80 CP SP

4 76.89 35.25 2.646 M ∗

p SP

4 138.50 36.30 4.874 I SP

4 75.57 141.26 4.016 M ∗

p I

4 137.71 145.16 7.384 I I

8 73.96 41.54 ≈ 320 CP SP

8 109.71 41.60 8.016 M ∗

p SP

8 189.18 38.77 13.080 I SP

8 106.32 165.35 12.896 M ∗

p I

8 188.39 152.97 21.336 I I

Table 6.12: Performance of the preconditioners with different Reynolds number Re.

Converged solutions were obtained in 28 and 26 time steps for Re = 1 and Re = 10,

respectively.

Re ItU ItH ∆tU PU PH

1 49.96 36.13 ≈ 80 CP SP

1 76.89 35.25 2.646 M ∗

p SP

1 138.50 36.30 4.874 I SP

1 75.57 141.26 4.016 M ∗

p I

1 137.71 145.16 7.384 I I

10 69.00 26.55 ≈ 110 CP SP

10 155.31 26.07 4.271 M ∗

p SP

10 230.54 26.30 6.295 I SP

10 153.04 80.37 5.016 M ∗

p I

10 229.92 80.55 7.533 I I
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Table 6.13: Performance of the preconditioners with different Weissenber number We.

The parameter β is set to zero. 28 time steps were needed to achieve a converged

solution for We = 0.1, 7 time steps when We = 0.

We ItU ItH ∆tU PU PH

0 46.57 39.46 ≈ 75 CP SP

0 64.14 38.97 2.376 M ∗

p SP

0 129.43 39.02 4.747 I SP

0 65.00 153.44 3.626 M ∗

p I

0 130.29 155.02 7.262 I I

0.1 49.96 36.13 ≈ 80 CP SP

0.1 76.89 35.25 2.646 M ∗

p SP

0.1 138.50 36.30 4.874 I SP

0.1 75.57 141.26 4.016 M ∗

p I

0.1 137.71 145.16 7.384 I I

The advantage of the overlapping Schwarz preconditioner for the Helmholtz operator

is obvious. In all cases it provides reductions in both the number of iterations in the

Helmholtz PCG loop and the time to reach convergence.
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Chapter 7

Prediction of Flow of Polymer

Melts

7.1 Introduction

In this chapter results are presented for the flow of an XPP fluid. It starts by giving

some results for the transient start-up of Poiseuille flow through a planar channel.

For the XPP fluid however, no analytic solution to this problem is available, and it

has to be computed numerically. These numerical results are shown in section 7.2.

The 1D solutions can be used as boundary conditions to 2D problems. An alternative

is to impose periodic boundary conditions. The way periodic boundary conditions

are imposed is explained in section 7.3. Results for the 2D channel flow problem are

then presented in section 7.4 using both methods of imposing boundary conditions.

The flow past a cylinder has been computed and the results are given in section 7.5.

Both the coupled solver and the uncoupled solver have been used to simulate this

flow. Finally the efficiency of some of the preconditioners described in section 4.4 is

given in section 7.6.
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A standard set of non-dimensional parameters has been derived from dimensional

parameters for the DSM Stamlyn LD 2008 XC43 LDPE melt, characterized in [62].

Only one of the four modes given in [62] is used. The parameters for this mode are

q = 2, ε = 1/3, α = 0.15. The ratio of viscosity parameter has been chosen the same

as is used in the Oldroyd B model, i.e. β = 1/9. The influence on the solutions for

the XPP model when varying these parameters, is being studied in this chapter. The

same parameter setting is also used as one of the modes in the multimode calculations.

The other modes are variations to these parameters, and they do not reflect different

modes in the DSM Stamlyn melt. The multimode calculations are included in this

chapter to demonstrate the ability of the developed software to simulate multimode

models. Future work can involve using the exact modal parameter settings necessary

to simulate the DSM Stamlyn LDPE.

7.2 1D Start-up to Poiseuille Flow

For the XPP model, no exact solution exists for steady Poiseuille flow through a pla-

nar channel, let alone an exact solution to the start-up of such a flow. For Newtonian

fluids and for the Oldroyd B and UCM models the pressure gradient ∂p/∂x is related

to the steady parabolic velocity profile through

∂p

∂x
=

∂2u

∂y2
, (7.1)

but for the XPP model such a relation is not available. This means that is not known

what pressure gradient induces what flow rate. However, to be able to make a fair

comparison for the drag on a cylinder of a Newtonian or an Oldroyd B fluid to the

drag evoked by an XPP fluid, the flows need to have the same flow rate.

First the same pressure gradient ∂p/∂x = −8, that has been used to start up the

flow of the Oldroyd B fluid in section 6.3, is used to start the flow of the XPP fluid
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as well. The height of the channel is h = 1, and it is divided into two equally

sized spectral elements, with an approximation order N = 10. The time step is

∆t = 10−3. The Weissenberg number is set to We = 1 and also the Reynolds number

is Re = 1. The other parameters are q = 2, ε = 1/3, α = 0.15, and β = 1/9. In

Figs. 7.1 and 7.2 the start-up of the velocity at the centreline of the channel, and

of the stretch and polymeric stress components at the channel wall is shown. There

is a large overshoot in the shear stress before it reaches steady state, but the other

overshoots and undershoots are not as those predicted for the Oldroyd B model in

figure 6.2. The flow rate that results from this pressure gradient is computed to

be 4.299, compared to the flow rate of 2/3 for the Oldroyd B model at the same

pressure gradient. Next, a pressure gradient of ∂p/∂x = −2.820 is applied to the
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Figure 7.1: Evolution of the centreline velocity, and the stretch and polymeric shear

stress at the wall of the channel, for an XPP fluid with ∂p/∂x = −8.
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Figure 7.2: Evolution of the normal components of the polymeric stress at the wall

of the channel, for an XPP fluid with ∂p/∂x = −8.
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same flow problem. Again the centreline velocity, the stretch and the components of

the polymeric stress are monitored as they evolve in time. Figs. 7.3 and 7.4 show

there is now an apparent overshoot in the transient velocity. The overshoots and

undershoots in the transient stress components have decreased in size. The flow rate

that accompanies this pressure gradient is 0.667, the same as the flow rate for the

Oldroyd B model with a pressure gradient of ∂p/∂x = −8. How this is achieved is

explained in the next section.
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Figure 7.3: Evolution of the centreline velocity, and the stretch and polymeric shear

stress at the wall of the channel, for an XPP fluid with ∂p/∂x = −2.820.
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Figure 7.4: Evolution of the normal components of the polymeric stress at the wall

of the channel, for an XPP fluid with ∂p/∂x = −2.820.

The profile of the velocity at intermediate time levels for both values of the pressure

gradient is shown in figure 7.5 and 7.6. It seems that the shear-thinning mecha-

nism, which causes the velocity profile to blunt, only influences the solution after the
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Figure 7.5: Velocity profile at intermediate time levels in start up of channel flow for

an XPP fluid with ∂p/∂x = −8.
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Figure 7.6: Velocity profile at intermediate time levels in start up of channel flow for

an XPP fluid with ∂p/∂x = −2.820.

overshoot has taken place.

7.3 Boundary Conditions

The governing equations for the XPP model do not possess an analytical solution for

plane Poiseuille flow like the Oldroyd B model for example. The pressure gradient

that was used in the previous section to bring about the correct flow rate for the

transient calculation, is determined by imposing periodic boundary conditions. How

these conditions are imposed is decribed below.
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First of all a flow rate is prescribed and the solution of the Stokes problem is obtained.

Together with zero extra-stresses everywhere in the domain, these make up the initial

conditions for the viscoelastic problem. After every time step, the boundary condi-

tions are modified as follows. The velocity, extra-stress, and stretch profiles at the

penultimate line of points on the Gauss-Lobatto grid, i.e. one before the outflow, at

each time step are used as inflow conditions for the next time step. In addition, the

velocity profile is imposed as an outflow condition. At the wall no-slip conditions are

assumed, and symmetry conditions are imposed along the line of symmetry.

7.4 Steady Channel Flow

In this section we describe how the steady state solutions for stretch, velocity pro-

files, pressure and stress components depend on the model parameters. The periodic

boundary conditions as described above have been used. The build-up to the steady

state now has no physical interpretation.

The non-dimensional length of the channel is L = 128, which is long enough to avoid

the destabilizing effects of short channels reported in [15] and [60]. The height of

the channel is taken to be h = 2. The mesh for the planar channel consists of four

equally sized spectral elements: two elements in the cross channel direction, and two

elements in the lengthwise direction. The iterations are stopped when the following

convergence criterion is satisfied:

||∆τ ||L2 < 10−6 and ||∆u||L2 < 10−6, (7.2)

where the L2 norms are defined in (5.17) and (5.18). The time step for these calcu-

lations is ∆t = 0.1.

For the channel flow problem, the stretches for the channel flow have been calculated
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using both the direct relation (3.24) and the iterative scheme (3.23) and as should

be expected they produce the same results. Since the cross channel derivatives of

velocity for the pom-pom model are in general nonlinear, unlike the situation for

the Stokes and Oldroyd B models, a mesh convergence study has been performed

before obtaining further results. The channel flow problem is solved using spectral

approximations ranging from N = 3 to N = 10. The Weissenberg number is We = 1,

and also Re = 1. The parameters have been chosen as β = 1/9, α = 0.15, ε = 1/3, and

the number of arms in the pom-pom molecule is q = 2. Fig. 7.7 shows convergence of

the trace of the orientation tensor, Is, to the value 1 when using the iterative scheme

(3.23). The error, E(Is), is the average error at the outflow of the channel,

E(Is) =
1

2(N + 1)

2(N+1)
∑

i=1

|Is(yi) − 1|, (7.3)

where 2(N + 1) is the number of Gauss-Lobatto points located along the outflow of

the channel. Based on this information, the remaining results shown in this section

have been obtained with a polynomial order of N = 7.
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Figure 7.7: Convergence of Is.
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In the remainder of this section, the parameters are fixed at We = 3, Re = 1, β = 1/9,

α = 0.15, ε = 1/3, q = 2, unless otherwise mentioned.

The influence of varying Weissenberg number on the solution is plotted in Fig. 7.8.

With increasing Weissenberg number the velocity profiles become more blunted, indi-

cating stronger shear-thinning behaviour. Although the stretch keeps increasing with

increasing We, the polymeric contribution to the extra-stress component τxx initially

grows, but relaxes at higher values of We.
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Figure 7.8: Dependence of the profiles of velocity, stretch, and polymeric contribu-

tion to the extra-stress components τxx and τxy at the outflow of the channel on

Weissenberg number.

By varying the parameter ε, we effectively change the structure of the polymer melt.

Higher values for ε correspond to less entangled backbones. In this case the molecules
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have relatively short backbones and the orientation and the stretch relax almost

simultaneously. Lower values for ε on the other hand correspond to highly entangled

melts. The orientation relaxation time is now much slower than the relaxation time

of the stretch. Note that since the Weissenberg number is kept fixed, changing ε

corresponds to changing λ0s, the relaxation time of the stretch. Caution has to be

taken in selecting the parameter ε, since the pom-pom model describes the behaviour

of branched polymers. Values of ε for this class of polymers are well in between these

two extrema. Fig. 7.9 shows that, although the flattening of the velocity profile is

larger at low values of ε, the stretch and stresses near the wall are lower than for

higher values of ε.
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to the extra-stress components τxx and τxy at the outflow of the channel on ε.

With all other parameters fixed, the variation of the number of arms q hardly affects
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Figure 7.10: Dependence of the profile of the stretch λ in the cross channel direction

y at the outflow of the channel, on the number of arms q.

the velocity profile, although when the number of arms is increased, a slight increase

in stretch may be observed in Fig. 7.10. Note here that when q = 1, the molecule is

actually linear and falls outside the range of the pom-pom molecules. The melt may

now be seen as a linear polymer, the behaviour of which is known not to be predicted

correctly using the pom-pom model.

The parameter α has no visual effect on the velocity, extra-stress and stretch profiles.

Since α is the parameter that endows the model with a nonzero second normal stress

differences, this result is hardly surprising. Since the second normal stress difference

in a plane channel has no influence on the solution, te influence of α is similarly

insignificant.

When a higher value for the parameter β is chosen, the melt is effectively diluted,

and lower stretches are expected to be found, together with a less flattened velocity

profile, and more Oldroyd-like extra-stress behaviour. Fig. 7.11 shows exactly this

behaviour as β is increased from β = 0 to β = 0.5.
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Figure 7.11: Dependence of the profiles of velocity, stretch, and polymeric contri-

bution to the extra-stress components τxx and τxy at the outflow of the channel on

β.

7.4.1 Multimode solutions

Three parameter settings from the single mode solutions are used as modes in a

multimode solution for the same channel flow problem. The settings for the modes

are

mode 1: We = 3, β̃ = 1/3, α = 0.15, ε = 1/3, q = 2,

mode 2: We = 3, β̃ = 1/3, α = 0.15, ε = 0.6, q = 2,

mode 3: We = 3, β̃ = 1/3, α = 0.15, ε = 1/3, q = 5,

and the values in the momentum equation are Re = 1 and β = 1/9. In Fig. 7.12 the

velocity profile of the steady solution is shown, together with profiles of the stretch

and stresses. Since each of the modes is characterized by a parameter setting that
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has also been used in the previous subsection to model single mode XPP fluids,

comparisons can be made between the multimode solutions in Fig. 7.12 and the

corresponding single modes solutions in Figs. 7.9 and 7.10. It can be seen that that

each mode i is stretched approximately the same way as in the corresponding single

mode solutions. The modal stresses however are lower than their single mode solution

counterparts.
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Figure 7.12: Profiles of velocity, stretch and stress components τxx and τxy for the

channel flow of a multimode XPP model.

In Fig. 7.13 the normal stress components computed using the multimode model, are

compared to the normal stress components predicted by the single mode calculations

based on each of the constituent modes of the multimode calculation. Apparently,

the multimode stresses are approximately an average solution of the stresses in the

single mode solutions.
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Figure 7.13: Profiles of all normal stress components of a multimode XPP model

compared to the corresponding single mode solutions.

Another multimode simulation has been performed using only two modes. They are

essentially the same as the first two modes from the previous multimode model, but

the relative viscosity ratios β̃i are changed. The modes are now

mode 1: We = 3, β̃ = 1/4, α = 0.15, ε = 1/3, q = 2,

mode 2: We = 3, β̃ = 3/4, α = 0.15, ε = 0.6, q = 2.

The viscosity of the second mode is now three times the viscosity of the first mode.

Again, the solutions of the two-mode model shown in Fig. 7.14 can be compared

to the solutions of the single mode calculations based on each of the constituent

modes of the multimode calculation. These corresponding single mode solutions can

be found in Fig. 7.9. The stretches that are predicted for the individual modes are

similar to the stretches predicted by these equivalent single mode models. Since the

viscosity of the second mode takes up a larger part of the total polymeric viscosity,

the stress of the second mode has a greater influence on the total stress. This can

also be seen in Fig. 7.15, in which the normal stress components of the multimode

model are compared to the stress components predicted by the equivalent single mode

simulations. As can be seen, the stress in the multimode model is still an average of

the corresponding single mode stresses, but it is weighted by the viscosity ratios β̃i.
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Figure 7.14: Profiles of velocity, stretch and stress components τxx and τxy for the

channel flow of a multimode XPP model.
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Figure 7.15: Profiles of all normal stress components of a multimode XPP model

compared to the corresponding single mode solutions.

7.5 Flow Past a Cylinder

The flow of an XPP fluid past a cylinder is computed using both the coupled solver

and the uncoupled solver. As the Weissenberg number is increased, solutions for the
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various variables are analyzed. The uncoupled solver allows for prediction of higher

Weissenberg numbers and therefore a study of parameter variation is performed using

this solver only.

Figure 7.16: Spectral element mesh with the spectral elements printed bold.

The cylinder is placed symmetrically in a channel of 2 units half-width. The ratio of

the radius of the cylinder to the half width of the channel is R/h = 0.5. The geome-

try of the problem is shown in Fig. 5.2. The benchmark problem is acknowledged to

be more difficult than the related sphere problem because, for the same aspect ratio

R/h, the planar flow past a cylinder undergoes a stronger contraction and expansion

than the axisymmetric flow past a sphere.

The computational domain extends a distance Li = 25 units upstream and Lo = 25

units downstream of the cylinder so that the assumption of fully developed flow

conditions at entry and exit is valid. The spectral element mesh used to solve this

problem consists of K = 20 elements and is shown in Fig. 7.16. These conditions

are taken from the solution for the start-up of Poiseuille flow in a planar channel

obtained earlier. With the uncoupled method, transient boundary conditions have

also been used to find solutions to this flow.

7.5.1 Coupled solver

Solutions have been obtained using a degree of the spectral approximation of N = 7.

The time step is chosen to be ∆t = 5 × 10−3. The pure convection problems are

solved with time steps that are an eighth of the size of the global time step (M = 8).
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The convergence criteria in the PCG methods are set to 10−9 for the Uzawa operator

and 10−14 for the Helmholtz operator. The iterations are stopped when the following

convergence criterion is satisfied:

||∆τ ||L2 < 10−6 and ||∆u||L2 < 10−6. (7.4)

The non-dimensional drag on the cylinder is computed using the expression

F = 2

∫ π

0

{

(−p + 2β
∂u

∂x
+ τxx) cos θ + (β(

∂v

∂x
+

∂u

∂y
) + τxy) sin θ

}

dθ, (7.5)

where F has been made dimensionless with µtU .

Results have been obtained for the flow of an XPP fluid past the confined cylin-

der. The material parameters that have been used in the XPP model are: β = 1/9,

ε = 1/3, α = 0.15. The velocity has been made dimensionless using the flow rate,

and the characteristic length is the radius of the cylinder. For a Reynolds number of

Re = 1 and Weissenberg numbers of We = 0.25 and We = 0.35, contour plots of the

stretch, and the first normal stress difference, N1 = τxx − τyy, are presented in Figs.

7.17 and 7.18, respectively. High values for the stretch are found at the wall above

the cylinder, but the highest peak in stretch is on the cylinder wall itself, shifted

slightly to the right as a result of inertia and the convective derivatives of stress and

stretch.

The stretch, and the components of the polymeric contribution to the stress along the

cylinder wall and the plane of symmetry located at y = 0, are plotted in Fig. 7.19 and

Fig. 7.20, for We = 0.25 and in Fig. 7.21 and Fig. 7.22, for We = 0.35. Although

the stretch along the cylinder wall has increased with increasing Weissenberg num-

ber, a relaxation of the stresses can be observed. This can be attributed to the fact

that local Weissenberg numbers may be higher than the global Weissenberg number.

Therefore the solution exhibits a similar behaviour to the stress relaxation at higher
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Figure 7.17: Contours of the stretch λ, for We = 0.25 (top) We = 0.35 (bottom).
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Weissenberg numbers that is observed in the channel flow, see Fig.7.8.
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Figure 7.19: The components of the polymeric stress on the line y = 0 and the

cylinder wall, for an XPP fluid with We = 0.25.
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Figure 7.20: The shear stress component and the stretch on the line y = 0 and the

cylinder wall, for an XPP fluid with We = 0.25.

Table 7.1 shows the drag reduction at increasing values for the Weissenberg number.

Note that even for these small Weissenberg numbers, the drag has decreased con-

siderably more than in the Oldroyd B model for We = 0.5, for which the predicted

drag is 115.5426. This may be explained by the fact that the stresses predicted in

the XPP model on the cylinder wall are much lower than the stresses predicted by

the Oldroyd B model.
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Figure 7.21: The components of the polymeric stress on the line y = 0 and the

cylinder wall, for an XPP fluid with We = 0.35.
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Figure 7.22: The shear stress component and the stretch on the line y = 0 and the

cylinder wall, for an XPP fluid with We = 0.35.

Table 7.1: Drag force F with varying Weissenberg number.

We 0 0.25 0.35

F 132.4057 93.8314 82.0643

7.5.2 Uncoupled solver

The results shown in the previous subsection and in [59] are only for modest Weis-

senberg. Higher Weissenberg numbers can be reached using the uncoupled solver.

The time step that is used in the uncoupled solver is ∆t = 10−2, and the calculations

are stopped when the L2-norms given in (5.17) and (5.18) have both reduced to 10−8.

The convergence criteria in the PCG methods are set to 10−9 for the Uzawa operator

and 10−14 for the Helmholtz operator. The convergence criterion in the Bi-CGStab
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method for the non symmetric operator SN is set to 10−12. Unless otherwise men-

tioned, the LUST method is used.

First a mesh convergence study is performed. The computed drag on the cylinder

for a XPP fluid with We = 1, Re = 1, β = 1/9, α = 0.15, q = 2, ε = 1/3 is given

for different values of the approximation order N in Fig. 7.23. The stretch λ on the

cylinder wall for increasing N is also shown in Fig. 7.23. The coordinate θ is defined

on the cylinder wall as θ = π/2− arccos(x). Based on these results a value of N = 7

is used to obtain results for different parameter settings.
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Figure 7.23: Mesh convergence of the drag and of the stretch on the cylinder wall

with increasing N .

For the different parameters, the stretch on the cylinder wall is shown in Fig. 7.24.

The results are similar to what was concluded for the flow through a planar channel.

The influence of the parameter α is very limited. Increasing the number of arms

from q = 2 to q = 5 though, causes the maximum stretch to increase from 47% to

around 58%. An even greater effect on the maximum stretch is caused by increasing

the value of ε. The maximum stretch is now around 70%. By setting the parameter

β to zero, there is no Newtonian viscosity in the system. This not only increases the
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stretch to about 62%, but also changes the shape of the curve. The maximum is now

tilted more towards the downstream end of the cylinder.
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Figure 7.24: The stretch on the cylinder wall with varying parameter settings. Stan-

dard parameters are Re = 1, We = 1, β = 1/9, ε = 1/3, q = 2 and α = 0.15.

The change in the parameter β also constitutes the greatest change in the computed

drag. It decreases from 49.7320 with β = 1/9 to 37.9850 with β = 0. All other

changes lead to an increase of the drag. Changing ε from ε = 1/3 to ε = 0.6 increases

the drag from 49.7320 to 55.2346. The change from α = 0 to α = 0.15 only increases

the drag to 50.2972, and the change from two arms to five arms increases the drag

to 50.8165.

The computations involving zero Newtonian viscosity have been performed on a mesh

in which narrow elements have been placed around the cylinder, as depicted in Fig.

7.25. Moreover, the approximation order has also been increased from N = 7 to

N = 10. This ensures that the stress boundary layer around the cylinder is captured

with sufficient resolution. Since the smallest mesh size of the smallest elements has

now decreased, the time step is also decreased from 10−2 to 2 · 10−3. To show the
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decrease in size of the boundary layers, contour plots of the first normal polymeric

stress component τxx are shown in Fig. 7.26. Contours of 25% and 50% stress lev-

els are shown. Fig. 7.27 shows the contours of 50% stretch, and that the stretch

also forms a boundary layer on the cylinder. At the higher Weissenberg number of

We = 2, the 50% contour may be further away from the cylinder wall, but high

stresses and stretches are also predicted in the regions in front of the cylinder and

behind the cylinder.

Figure 7.25: Mesh with 26 spectral elements and N = 10.
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Figure 7.26: Contours of the first normal stress component τxx indicating the size of

the stress boundary layer for the different parameter settings. The standard param-

eter setting is We = 1, β = 1/9, ε = 1/3, q = 2 and α = 0.15.

The influence of an increase of Weissenberg number on the stretch along the cylinder

wall is also monitored. Fig. 7.28 shows the stretch profiles for a range of Weissenberg
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Figure 7.27: Contours of the stretch λ indicating the size of the stretch boundary

layer for the different parameter settings. The standard parameter setting is We = 1,

β = 1/9, ε = 1/3, q = 2 and α = 0.15.

numbers between We = 0.25 and We = 5. The stretch keeps increasing with in-

creasing Weissenberg number. At the higher Weissenberg numbers We ≥ 2, there is

a need for a finer approximation to avoid divergence of the numerical solution, so the

value of N has been increased. This behaviour is opposite to what is often observed

in computations involving the Oldroyd B model, where increasing mesh resolution

can result in a lower maximum attainable Weissenberg number. At the Weissenberg

number of three, a result has been added for a value of ε = 0.6 as well. This solution

and the solution for We = 5 still show some irregularities, and an even higher value

for N could be used to obtain better solutions to these problems. The values of the

drag that have been computed for these Weissenberg numbers are given in Table

7.2. Especially at the low Weissenberg numbers, the drag reduction is large. At the

Weissenberg number of five, the drag is only 18.4% of the Newtonian value.

Table 7.2: Drag force F with varying Weissenberg number.

We 0 0.25 0.5 1.0 2.0 3.0 5.0

F 132.4057 93.8730 69.9838 49.7320 35.1179 29.3267 24.3724
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Figure 7.28: The stretch on the cylinder wall with increasing We. Other parameters

are Re = 1, β = 1/9, ε = 1/3, q = 2 and α = 0.15. The result for We = 3 and

ε = 0.6 is also included.

For a Weissenberg number of We = 1 and with parameters Re = 1, β = 1/9,

α = 0.15, q = 2, ε = 1/3, the flow past a cylinder is calculated. Contour plots of the

first normal stress difference N1 and the stretch λ are shown in Fig. 7.29.

The highest values for the stretch that have been computed in this problem are for

a parameter set of We = 3 and ε = 0.6, and also Re = 1, β = 1/9, α = 0.15 and

q = 2. For this set of parameters, the stretch along the cylinder wall is already shown

in Fig. 7.28. The drag computed with these parameters is 32.5506. The stretch on

the cylinder wall locally exceeds λ = 2, which is more than the number of arms.

In the original pom-pom model this would not be possible, but in the XPP model

the constraint that the stretch can not exceed the number of arms is removed. Con-

tour plots of the first normal stress difference and the stretch are shown in Fig. 7.30.

In Figs. 7.31 - 7.34 the profiles along the plane of symmetry y = 0 and the cylinder

are plotted both for the XPP fluid with We = 1, ε = 1/3, Re = 1, β = 1/9, α = 0.15,

q = 2 and for the XPP fluid with We = 3, ε = 0.6, Re = 1, β = 1/9, α = 0.15,
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Figure 7.29: Contours of the first normal stress difference N1 (top) and for the stretch

λ (bottom), for We = 1.

q = 2. For the Weissenberg number of one, it can be seen that the levels of the

polymeric stress components on the cylinder wall have decreased in comparison to

Figs. 7.21 and 7.22, but that the stresses on the symmetry line have kept increasing.

The maximum stretch has increased to 45%, but the stretch along the symmetry line

has increased more notably to about 16% in both stagnation areas in front of and

just behind the cylinder. The results for We = 3 and ε = 0.6 show that these trends

persist. The stress levels are of equal size on the cylinder and in the stagnation areas,

and the stretch shows the same pattern. The maximum stretch is still on the cylinder

wall and amounts to 103%, the levels of the stretch just in front of and just behind

the cylinder have increased to 85% and 90% respectively.

For the XPP fluid with We = 1, ε = 1/3, Re = 1, β = 1/9, α = 0.15 and q = 2, the

solution has been calculated using the LUST method as well as the SUPG method

and the Galerkin method. In [39] it is found that compared to Galerkin and SUPG,
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Figure 7.30: Contours of the first normal stress difference N1 (top) and for the stretch

λ (bottom), for We = 3 and ε = 0.6.
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Figure 7.31: The normal components of the polymeric stress on the line y = 0 and

the cylinder wall, for an XPP fluid with We = 1.

the use of LUST results in superior smoothness of the polymeric stress solutions of

the Oldroyd B model in flow past a cylinder. This superior smoothness has not been

found for this XPP fluid. There is however a slight decrease of about 0.1% in the

computed drag on the cylinder as can be seen in Table 7.3
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cylinder wall, for an XPP fluid with We = 1.
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Figure 7.33: The normal components of the polymeric stress on the line y = 0 and

the cylinder wall, for an XPP fluid with We = 3 and ε = 0.6.
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Figure 7.34: The shear stress component and the stretch on the line y = 0 and the

cylinder wall, for an XPP fluid with We = 3 and ε = 0.6.
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Table 7.3: Computed drag using different test functions.

Galerkin SUPG LUST

49.7881 49.7689 49.7320

Transient boundary conditions

Two transient calculations have been performed for the start-up of the flow past the

cylinder. In Fig. 7.35 the drag is shown as a function of time for an XPP fluid for

the Weissenberg numbers We = 0.5 and We = 1. The other parameters are Re = 1,

β = 1/9, α = 0.15, q = 2, ε = 1/3.
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Figure 7.35: Drag on cylinder as a function of time in start-up of Poiseuille flow of

an XPP fluid for two different Weissenberg numbers and with Re = 1, β = 1/9,

α = 0.15, q = 2, ε = 1/3.

Multimode solutions

Multimode calculations have been performed on the flow past the cylinder using the

same parameter settings presented in section 7.4.1, but now with We = 1. For

the three-mode model, the components of the polymeric stress and the stretch are
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plotted along the line y = 0 and the cylinder wall and are shown in Figs. 7.36 and

7.37, respectively. The drag predicted for this three mode model is 51.8607, which is

close to the average of the drags predicted for the equivalent single mode models.
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Figure 7.36: The normal components of the polymeric stress on the line y = 0 and

the cylinder wall, for the three-mode XPP fluid.
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Figure 7.37: The shear stress component and the stretch on the line y = 0 and the

cylinder wall, for the three-mode XPP fluid.

In Figs. 7.38 and 7.39 the components of the polymeric stress and the stretch are

plotted along the line y = 0 and the cylinder wall, for the two-mode model presented

in section 7.4.1. Again the different values for β̃ cause the second mode to be dominant

in determining the values of the stress components. The drag predicted by the two-

mode model is 53.7946, which is similar to the weighted average of 75% of the drag

of the single mode with ε = 0.6, and 25% of the drag of the single mode with all
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standard parameters (We = 1, ε = 1/3, q = 2 and α = 0.15).
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Figure 7.38: The normal components of the polymeric stress on the line y = 0 and

the cylinder wall, for the two-mode XPP fluid.
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Figure 7.39: The shear stress component and the stretch on the line y = 0 and the

cylinder wall, for the two-mode XPP fluid.

7.6 Preconditioners and the Schur Method

The preconditioners described in section 4.4 are applied here to the problem of the

flow of an XPP fluid past a cylinder as described in section 7.5.2. The parame-

ter set is We = 1, Re = 1, β = 1/9, α = 0.15, q = 2, ε = 1/3. For the mesh with

20 elements, the order of approximation is varied from N = 7 to N = 10 and N = 13.
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Only the first time step of this problem is solved. Note that this is the most difficult

time step to solve as the full spectrum of the pressure must be computed. In later

time steps, only perturbations from the previous time step are needed. The conver-

gence criteria in the PCG methods for the Uzawa and Helmholtz operators are set

to 10−9 and 10−14 respectively, and the convergence criterion for the non-symmetric

operator SN is set to 10−12.

To recap, the preconditioners that will be used in this section are given. The precon-

ditioners that will be tested here for the Uzawa operator are the diagonal spectral

operator based on the Cahouet and Chabard preconditioner, which in this case re-

duces to

P−1
U = D−1

U = βM−1
p + Mldiag(Ep

N)−1. (7.6)

Furthermore the preconditioner based on the full Laplacian operator in pressure space

is used

PU = FU =
Mp

β
+ MlE

p
N , (7.7)

the finite element preconditioner is used

P−1
U = FE−1

U =
K
∑

k=1

RT
k

(

MFE
k

β
+ MlE

FE
k

)−1

Rk, (7.8)

and last the pressure mass matrix is also used

PU = Mp. (7.9)

For the Helmholtz operator we have the preconditioner based on the overlapping

Schwarz method,

P−1
H = O−1,i

H = RT
0 A−1

0 R0 +
K
∑

k=1

RT
k A−1

k Rk, (7.10)

where i denotes the number of GLL points that overlap onto adjacent elements.

The other preconditioner is based on the diagonals of the spectral mass and stiffness
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operators,

PH = DH = MlCN +

(

β +
(1 − β)

Cn
l

)

diag(E ′

N). (7.11)

Instead of applying these preconditioners on the Helmholtz operator, the Schur

method can be used. As mentioned in 4.5 the problem is then reduced to invert-

ing the Schur complement of the Helmholtz operator, which reads

SH = HBB − HBIH
−1
II HT

BI . (7.12)

Since the Schur operator is smaller in size, an LU decomposition of this matrix is

stored and it is inverted when neccesary. This direct inversion is denoted in the fol-

lowing tables by SS, and a unit entry will be placed in the corresponding columns for

the Helmholtz iterations. The Schur matrix can also be solved iteratively however,

and this process will be indicated by SD. As a preconditioner the diagonal of the

Schur matrix is used. When no preconditioner is used in the iterative inversion of the

Schur complement, it will be denoted by SI .

For the problem with N = 7, Table 7.4 shows the number of iterations needed to

complete the Uzawa inversion, using the preconditioner FU . The column ItH shows

the average number of iterations needed to invert the Helmholtz operator within ev-

ery Uzawa iteration. The CPU time taken to complete the Uzawa inversion is also

shown. These calculations are performed on a Pentium 4, 2.6GHz processor.

For the Helmholtz operator, the Schur method leads to the quickest inversion of the

problem. As far as the preconditioners is concerned, the preconditioner DH results

in slightly less iterations than the overlapping Schwarz preconditioner OH . There is

a large reduction in iterations compared to the number of iterations needed when

no preconditioner is used. When comparing the two inversion methods of the Schur

complement, it can be seen that iterative inversions SD and SI of the Helmholtz
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operator leads to a higher iteration count for the Uzawa operator than the direct

inversion SS.

Table 7.4: Efficiency of preconditioners for the Helmholtz operator, for N = 7.

Method ItU av(ItH) CPU

SS 260 1.00 17.04

SD 323 14.21 35.12

SI 326 77.08 110.96

DH 317 26.59 72.28

O2
H 325 35.20 150.12

O3
H 329 32.89 178.77

O4
H 330 32.83 241.83

I 308 201.36 407.49

Table 7.5 shows the efficiency of the preconditioners used for the Uzawa operator.

For the Helmholtz operator the Schur method SS with direct inversion is used here,

so there is no iterative inversion of the Helmholtz operator. The advantage of the

preconditioners FU and FEU is obvious over the other preconditioners which reduce

the number of iterations only marginally.

Table 7.5: Efficiency of preconditioners for the Uzawa, for N = 7.

Method ItU CPU

FU 260 17.04

FEU 311 21.14

DU 1234 80.14

Mp 1499 100.22

I 1706 110.36
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In Table 7.6 the efficiency of the combination of preconditioners for the problem with

N = 10 is shown. The method column now contains the method used to invert

both the Uzawa and the Helmholtz operator. As the problem has inceased in size

from N = 7 to N = 10, the number of iterations needed to invert the Helmholtz

operator has decreased for the overlapping Schwarz preconditioner OH. It is clearly

more robust than the preconditioner based on the diagonals of the spectral operators,

DH . Note that the iteration count for the Uzawa operator has increased for both the

DH and the FU preconditioner. Relative to one another, FU decreased the iterations

for N = 7 almost five-fold. For N = 10 the decrease in iterations is almost six-fold.

The FEU preconditioner decreases the number iterations even more. It is also more

robust than the FU preconditioner since the increase in iterations from N = 7 to

N = 10 is not as large.

Table 7.6: Efficiency of preconditioners for the Uzawa and Helmholtz operators, for

N = 10.

Method ItU av(ItH) CPU

FEU SS 369 1.00 125.31

FU SS 396 1.00 134.06

FU SD 499 18.18 268.81

FU SI 508 84.17 684.90

FU O2
H 508 34.31 883.01

FU O3
H 519 29.59 861.86

FU O4
H 519 29.10 998.75

FU DH 502 39.30 725.42

DU SS 2304 1.00 773.39

The approximation order is now increased to N = 13 and the results are given in

Table 7.7. As the order of the approximation N increases, higher values for the
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overlap become more efficient. For N = 10 and N = 13, the overlap of three is the

most efficient although an overlap of four nodes results in a lower iteration count.

For this highest tested value of N the finite element preconditioner FEU provides a

considerable reduction in iterations compared with the FU preconditioner.

Table 7.7: Efficiency of preconditioners for the Uzawa and Helmholtz operators, for

N = 13.

Method ItU av(ItH) CPU

FEU SS 485 1.00 546.08

FU SS 621 1.00 700.90

FU O2
H 801 31.42 3305.08

FU O3
H 792 28.74 3229.96

FU O4
H 760 27.76 3530.76

FU DH 784 52.44 3503.94

FU SD 780 20.90 1364.83

FU SI 769 86.81 2847.79

Of course the comparison between the direct inversion of the Schur complement of

the Helmholtz operator and the iterative methods is not a completely fair one. The

direct inversion involves computational time for setting up the LU decomposition,

and uses more memory to store this LU decomposition. For the problems presented

in this thesis however, memory usage has never been a problem on a machine with

256 Mb internal memory. The conclusion that can be draw from this section is that

in order to achieve the most efficient algorithm compromises have to be made. On the

one hand the size of the problem is almost limitless using iterative solvers, but this

means the speed of the algorithm is compromised. On the other hand direct methods

can be used to invert problems quicker, but the size of the problem is limited. The

most efficient method in this thesis is an example of a combination of both methods.
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An iterative method is used to solve the pressure system, although the precondition-

ers used in the inversion are based on operators that have been stored in memory.

By using the Schur complement method, the size of the problem is reduced and this

reduces the claim on storage space such that the Schur complement of the Helmholtz

operator may be stored as well. As is shown above, a preconditioner can be used to

produce a quick iterative inversion for the the Schur complement as well.

The algorithms used in this research have been developed to run on one processor.

The real strength of the overlapping Schwarz preconditioner however, lies in the fact

that the work can be divided over multiple processors easily, since it is based on the

local finite element matrices.

The inversion of the non-symmetric operator SN takes up only a fraction of the CPU

time of the inversion of the Uzawa operator, typically around 1%. The number of

iterations needed to invert this operator however are very high when no preconditioner

is used. The use of the mass matrix on some occasions reduces the iteration count

by an amount of the order 103.

202



Chapter 8

Conclusions

In this thesis a spectral element technique has been developed for efficiently solving

the flow of polymer melts using the extended pom-pom (XPP) model and of polymer

solutions using the Oldroyd B model. Both steady and transient solutions have been

analyzed with respect to the stability of the spectral element method. The spectral

element technique incorporates a three-field formulation of the problem in terms of

velocity, pressure and extra-stress.

Some theoretical issues concerning the XPP model have been addressed. The type of

the equations in the XPP model is investigated, and it is shown that the XPP model

is of similar type as the Oldroyd B model. The predictions of the shear and exten-

sional viscosity by the XPP model are compared to the original pom-pom model. The

extensional viscosity of the original pom-pom model exhibits two discontinuities. It

is shown that these are both overcome in the XPP model.

The use of a modified test function has been investigated that allows for easy imple-

mentation of zero Neumann boundary symmetry conditions. For the Stokes problem

the efficiency has been compared to that of the original test function. By using the
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modified test function, the size of the discrete problem is reduced since the nodes on

the symmetry axis or plane are not included. The modified test function however

generates some extra terms in the discrete operators. Although the original inter-

polant is found to be more efficient for planar symmetric problems, for axisymmetric

problems the modified test function leads to a faster solver. The reason for this is

that the modified interpolant does not generate zero rows or columns in the discrete

operators that are associated with a zero radial coordinate in axisymmetric problems.

A modified continuity equation is implemented that ensures that the zero mean con-

dition on pressure is satisfied automatically. This leads to a better conditioned Uzawa

operator, and the result of this is that the Uzawa operator may be iteratively inverted

to any convergence criterion. Without the use of the zero mean condition, problems

in the inversion arise when the convergence criteria are set too strict.

The performance of three different temporal discretization schemes has been com-

pared. When the Oldroyd B model is reduced to the UCM model, by setting β = 0,

the first-order method performs better than the two second-order methods. As ex-

pected, the numerical solution of the planar Poiseuille flow becomes more stable when

the parameter β is increased and when a nonzero Reynolds number is chosen.

Increasing the order of the numerical approximation results in a decrease in the crit-

ical value of the Weissenberg number, both for steady and transient flows. The same

behaviour is observed when the length of the channel is shortened, or the number of

elements in the lengthwise direction is increased. Increasing the number of elements

in the cross channel direction does not influence the stability of the scheme. Ap-

parently, any type of refinement in the lengthwise direction decreases the maximum

attainable Weissenber number, whereas this number is insensitive to refinement in
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the cross channel direction. This is in agreement with the findings of Fiétier and

Deville [15].

The start-up of Poiseuille flow through a planar channel has been analyzed for New-

tonian flow, for Oldroyd B fluids and for XPP fluids. For the Oldroyd B model an

exact solution to this transient problem is available, and comparisons of the numeri-

cal to the analytic solutions have been made.

A number of different preconditioners have been tested on both the flow of an Oldroyd

B fluid through a planar channel and on the flow of an XPP fluid past a cylinder.

The efficiency of preconditioners based on both spectral element approximations and

finite element approximations has been demonstrated. For the XPP model the use of

the Schur complement method, which reduces the size of the Helmholtz operator, has

also been tested. It is found that the use of preconditioners based on the storage of

spectral element matrices in combination with the Schur complement method results

in the most efficient solver.

The upwinding methods SUPG and LUST have been implemented. These can only

be used in combination with an algorithm that solves the constitutive equations sep-

arately from the field equations. The use of the uncoupled method has lead to an

increase of the maximum attainable Weissenberg number compared to a method that

solved all the equations in a coupled fashion. This is the case even when no upwind-

ing methods are used. The highest Weissenberg numbers can be reached using the

LUST method together with the uncoupled solver. Using this algorithm the flow of

an XPP fluid past a confined cylinder has been computed and an analysis of the flow

has been performed.
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The influence of different parameter settings in the XPP model has been analyzed

with respect to predicted velocity, stresses and molecular stretch. This has been done

for the planar channel flow and the flow past a confined cylinder. The application of

a multimode model is also investigated for both these flows.
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Appendix A

Derivation of Conservation

Equations

The derivations of the conservation equations are given, followed by a derivation

of the deformation tensor. The derivation of the field equations that satisfy the

conservation of mass and momentum is given below. All derivations are made under

the assumption that the continuum hypothesis is valid. This means that the length

scale of an infinitesimal element, which is used to integrate over volumes and surfaces,

is still considerably larger than the largest molecular length scale.

Conservation of mass equation

Consider a fixed volume V in space, with a surface area S, through which a medium

passes. Under the assumption of the continuum hypothesis, the mass of medium that

enters or leaves V through an infinitesimal part of its area dS, can be calculated as

ρu · dS, (A.1)

where ρ is the density of the medium, and u is the velocity vector. Note that ρu · dS

is positive for an outward pointing velocity vector, i.e. for outflow. The net mass
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outflow through the surface S then becomes

∫ ∫

S

ρu · dS. (A.2)

Since the mass of the medium that is inside a infinitesimal volume element dV is

given by ρdV , the decrease in time of mass inside V can be expressed as

− ∂

∂t

∫ ∫ ∫

V

ρdV, (A.3)

where the time derivative does not apply to the volume dV , since V is fixed in space.

Of course the outflow through the area S must equal the decrease of mass inside V ,

so the equation governing the conservation of mass is

∫ ∫ ∫

V

∂ρ

∂t
dV +

∫ ∫

S

ρu · dS = 0. (A.4)

Applying the divergence theorem to the second term yields

∫ ∫ ∫

V

(

∂ρ

∂t
+ ∇ · (ρu)

)

dV = 0. (A.5)

Since V is chosen arbitrarily in space, the integrand needs to be zero. This gives the

conservation of mass in its differential form

∂ρ

∂t
+ ∇ · (ρu) = 0. (A.6)

In this thesis the medium is always a fluid. Since compressibility in fluids is negligible,

the density ρ does not change with time or space. In this case the conservation of

mass reduces to

∇ · u = 0. (A.7)

In a two dimensional Cartesian coordinate system, this is

∂u

∂x
+

∂v

∂y
= 0. (A.8)
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Conservation of momentum equation

The equation governing the conservation of momentum is based on Newton’s second

law F = ma, or

F =
d

dt
(mu), (A.9)

when change of mass is taken into account. The term mu is the momentum of a

volume of fluid with mass m. The force F can be broken up into body forces (fb)

and surface forces. The body force, gravity for example, which acts on a volume dV

is given by fbdV . The surface force consists of a pressure force, and a force due to

viscous and elastic stresses. The pressure force acting on the surface dS, is −pdS,

where p is the pressure. The force due to stresses in the medium is TdS, where T

is the extra-stress tensor. Since moments acting on a volume dV are assumed to

be zero, the tangential stresses must satisfy Tij = Tji, so the extra-stress tensor is

symmetric. Using all this information, the force F can be written as

F =

∫ ∫ ∫

V

fbdV −
∫ ∫

S

pdS +

∫ ∫

S

TdS, (A.10)

or, using the divergence theorem

F =

∫ ∫ ∫

V

fbdV +

∫ ∫ ∫

V

∇ · σdV, (A.11)

where σ is the total stress tensor, defined as σ = −pI + T.

Analogous to the time rate of change in the mass conservation, the time rate of

change of momentum is the sum of the net outflow of momentum through the surface

S, and the change of momentum, with time, inside the volume V . Again, the mass

flowing through dS is ρu · dS, so the flow of momentum is (ρu · dS)u. The amount

of momentum contained inside a volume dV is (ρdV )u. The term ∂
∂t

(mu) may now

be expressed as

d

dt
(mu) =

∫ ∫ ∫

V

∂(ρu)

∂t
dV +

∫ ∫

S

(ρu · dS)u, (A.12)
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or, using the divergence theorem on the second term in the right, and applying the

conservation of mass to it,

d

dt
(mu) =

∫ ∫ ∫

V

∂(ρu)

∂t
dV +

∫ ∫ ∫

V

ρu · (∇u)T dV. (A.13)

So the conservation of momentum equation in integral form is given by

∫ ∫ ∫

V

(

∂(ρu)

∂t
+ ρu · (∇u)T −∇ · σ − fb

)

dV = 0. (A.14)

In its differential form, the conservation of momentum equation reads

∂(ρu)

∂t
+ ρu · (∇u)T = ∇ · σ + fb. (A.15)

For an incompressible fluid, and substituting σ = −pI + T, the momentum equation

reads

ρ

(

∂u

∂t
+ u · (∇u)T

)

= −∇p + ∇ ·T + fb. (A.16)

In a two dimensional Cartesian coordinate system, this is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

∂Txx

∂x
+

∂Txy

∂y
, (A.17)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

∂Txy

∂x
+

∂Tyy

∂y
. (A.18)

Rate of deformation tensor

Depicted in Fig. A.1 is the deformation of an infinitesimal fluid element [dx × dy]

over an infinitesimal time dt.

The rate of deformation, or strain rate, in the x-direction is the percentual increase

in length of the horizontal line-elements, in that direction, or

dxxdt =
(dx + ∂u

∂x
dxdt) − dx

dx
→ dxx =

∂u

∂x
. (A.19)

In the same way, the rate of deformation in y-direction is

dyy =
∂v

∂y
. (A.20)
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Figure A.1: Deformation of a infinitesimal fluid element.

The shear rate of deformation is defined as the average decrease of the angles α and

β, and is given by

dxydt =
1

2

(

(∂v
∂x

dxdt)

dx
+

(∂u
∂y

dydt)

dy

)

→ dxy =
1

2
(
∂u

∂y
+

∂v

∂x
). (A.21)

Like the stress tensor, the rate of deformation tensor d is also symmetric. In two

dimensions, d can be expressed as

d =





dxx dxy

dxy dyy



 =





∂u
∂x

1
2
(∂u

∂y
+ ∂v

∂x
)

1
2
(∂u

∂y
+ ∂v

∂x
) ∂v

∂y



 =
1

2

(

∇u + (∇u)T
)

. (A.22)
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Appendix B

Equations in Component Form

Given here are the equations for the generic model that is used in this thesis, in two

dimensional Cartesian component form.

∂u

∂x
+

∂v

∂y
= 0,

Re

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −∂p

∂x
+

∂τxx

∂x
+

∂τxy

∂y
+ β

∂2u

∂x2
+ β

∂2u

∂y2
,

Re

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

= −∂p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+ β

∂2v

∂x2
+ β

∂2v

∂y2
,

fτxx + We

(

∂τxx

∂t
+ u

∂τxx

∂x
+ v

∂τxx

∂y
− 2τxx

∂u

∂x
− 2τxy

∂u

∂y

)

+
1 − β

We
(f − 1) +

αWe

1 − β
(τ 2

xx + τ 2
xy) = 2(1 − β)

∂u

∂x
,

fτyy + We

(

∂τyy

∂t
+ u

∂τyy

∂x
+ v

∂τyy

∂y
− 2τxy

∂v

∂x
− 2τyy

∂v

∂y

)

+
1 − β

We
(f − 1) +

αWe

1 − β
(τ 2

xy + τ 2
yy) = 2(1 − β)

∂v

∂y
,

fτzz + We

(

∂τzz

∂t
+ u

∂τzz

∂x
+ v

∂τzz

∂y

)

+
1 − β

We
(f − 1) +

αWe

1 − β
τ 2
zz = 0,

fτxy + We

(

∂τxy

∂t
+ u

∂τxy

∂x
+ v

∂τxy

∂y
− τxx

∂v

∂x
− τyy

∂u

∂y

)

+
αWe

1 − β
τxy (τxx + τxy) = (1−β)

(

∂u

∂y
+

∂v

∂x

)

,
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where

f =
2

ε

(

1 − 1

λ

)

eν(λ−1) +
1

λ2

(

1 − α

3

(

We

1 − β

)2

(τ 2
xx + τ 2

yy + τ 2
zz + 2τ 2

xy)

)

. (B.1)

The expression for the backbone stretch λ in the double equation version of the XPP

model in two dimensional Cartesian coordinates is

∂λ

∂t
+ u

∂λ

∂x
+ v

∂λ

∂y
=

We

3(1 − β)

1

λ

(

τxx
∂u

∂x
+ τyy

∂v

∂y
+ τxy(

∂u

∂y
+

∂v

∂x
)

)

− λ − 1

εWe
eν(λ−1),

(B.2)
and for the single equation version the expression is

λ =

√

1 +
We

(1 − β)

1

3
(τxx + τyy + τzz). (B.3)

The three field Stokes problem is written out in Table B.1 in component form, for both

a two dimensional Cartesian coordinate system and for a cylindrical polar coordinate

system with components (z, r, θ). All θ dependence has been removed from these

equations to give the axisymmetric equations.

Table B.1: The Stokes equations in component form, for planar and for axisymmetric

problems.

Planar Axisymmetric

∂u

∂x
+

∂u

∂y
= 0

∂ur

∂r
+

∂uz

∂z
+

ur

r
= 0

∂p

∂x
=

∂Txx

∂x
+

∂Txy

∂y

∂p

∂z
=

∂Tzz

∂z
+

∂Tzr

∂r
+

Tzr

r

∂p

∂y
=

∂Txy

∂x
+

∂Tyy

∂y

∂p

∂r
=

∂Tzr

∂z
+

1

r

∂Trr

∂r
+

Trr − Tθθ

r

Txx = 2η
∂u

∂x
Tzz = 2η

∂uz

∂z

Txy = η

(

∂u

∂y
+

∂v

∂x

)

Tzr = η

(

∂uz

∂r
+

∂ur

∂z

)

Txx = 2η
∂v

∂y
Trr = 2η

∂ur

∂r
Tθθ = 2η

ur

r
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Appendix C

Derivation of the Single Equation

Version of the XPP Model

This appendix gives the derivation of the single equation version of the extended pom-

pom model from the double equation version. The equations in the double extended

version are

∇

s +f(u, s, λ)s +
α − 1

3λ0bλ2
I +

3αλ2

λ0b
s · s = 0, (C.1)

where

f(u, s, λ) = 2[d : s] +
1

λ0bλ2
(1 − α − 3αλ4Is·s), (C.2)

Dλ

Dt
= λ[d : s] − λ − 1

λ0s
eν(λ−1). (C.3)

Multiply constitutive equation (C.1) with λ2 to find

∇

(λ2s) −(
Dλ2

Dt
)s + f(u, s, λ)(λ2s) +

α − 1

3λ0b
I +

3α

λ0b
(λ2s) · (λ2s) = 0. (C.4)

Substitute the equation for stretch (C.3) rewritten as

Dλ2

Dt
= 2λ2[d : s] − 2λ

λ − 1

λ0s
eν(λ−1), (C.5)

to find

∇

(λ2s) +

(

f(u, s, λ) − 2[d : s] +
2(λ − 1)

λλ0s
eν(λ−1)

)

(λ2s)+
α − 1

3λ0b
I+

3α

λ0b
(λ2s) ·(λ2s) = 0,

(C.6)
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or
∇

(λ2s) +g(s, λ)(λ2s) +
α − 1

3λ0b

I +
3α

λ0b

(λ2s) · (λ2s) = 0, (C.7)

with

g(s, λ) =
2(λ − 1)

λλ0s
eν(λ−1) +

1

λ0bλ2
(1 − α − 3αλ4Is·s). (C.8)

Now multiply (C.7) by 3, subtract the identity tensor I from each occurrence of λ2s,

and call this A = 3λ2s− I. Also, use the identity (B− I) · (B− I) = B ·B− 2B + I.

Then

∇

A +
∇

I +g(s, λ)A + g(s, λ)I +
α − 1

λ0b
I +

α

λ0b
A · A − α

λ0b
(I− 2(3λ2s)) = 0, (C.9)

or
∇

A +(g(s, λ) +
2α

λ0b
)A + (g(s, λ) +

2α

λ0b
− 1

λ0b
)I +

α

λ0b
A · A = 2d, (C.10)

or
∇

A +h(s, λ)A + (h(s, λ) − 1

λ0b
)I +

α

λ0b
A · A = 2d, (C.11)

where

h(s, λ) =
2(λ − 1)

λλ0s
eν(λ−1) +

1

λ0bλ2
(1 − α − 3αλ4Is·s) +

2α

λ0b
. (C.12)

We now write h(s, λ). Noting that I(B−I)·(B−I) = IB·B − 2IB + 3, then

h(A, λ) =
2(λ − 1)

λλ0s

eν(λ−1) +
1

λ0bλ2
(2αλ2 + 1− α− α

3
(IA·A − 3 + 2(IA + 3)), (C.13)

or

h(A, λ) =
2(λ − 1)

λλ0s
eν(λ−1) +

1

λ0bλ2
(1 − α

3
IA·A − 2α(

IA

3
+ 1 − λ2)). (C.14)

Of course, τ = G0A, so the constitutive equation for the double equation version is

found to be the same as the constitutive equation for the single equation version:

λ0b
∇

τ +f(τ , λ)τ + G0(f(τ , λ) − 1)I +
α

G0
τ · τ = 2G0λ0bd, (C.15)

where

f(τ , λ) = 2
λ0b

λ0s
(1 − 1

λ
)eν(λ−1) +

1

λ2
(1 − α

3G2
0

Iτ ·τ − 2α(
Iτ

3G0
+ 1 − λ2)). (C.16)
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The trace of the orientation tensor equals one, and since Iτ = G0(3λ
2Is − 3), we find

that Iτ

3G0
+ 1 − λ2 = 0. This simplifies f(τ , λ) and provides the expression for the

stretch

f(τ , λ) = 2
λ0b

λ0s
(1 − 1

λ
)eν(λ−1) +

1

λ2
(1 − α

3G2
0

Iτ ·τ ), (C.17)

λ =

√

1 +
Iτ

3G0
. (C.18)

When the parameter α equals zero then τzz = τyy, and the trace of the stress tensor is

Iτ = τxx + 2τyy. When α 6= 0 however, τzz needs to be calculated separately. It may

not be calculated from Iτ = G0(3λ
2Is − 3), otherwise this statement is used twice.
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Appendix D

Calculation of the Modified

Lagrangian Interpolant

Presented here is the calculation of the modified Lagrangian interpolant ĥj(x) and

its derivative d̂ij, for 1 ≤ j ≤ N − 1 and for j = N .

Calculation of ĥj(x), 1 ≤ j ≤ N − 1

Using the first property in Eq. (3.55), we can deduce a relation between a and b.

ĥj(xj) = 1 ⇒ lim
x→xj

P ′

N(x)(1 − x)

(x − xj)
(ax + b) =

lim
x→xj

P ′′

N(x)(1 − x)(ax + b) − P ′

N(x)(ax + b) + P ′

N(x)(1 − x)a

1
= 1.

Using the property that P ′

N(xj) = 0 for 1 ≤ j ≤ N − 1, we find

P ′′

N(xj)(1 − xj)(axj + b) = 1. (D.1)

Now use the second property in Eq. (3.56) to find a second relation

ĥ′

j(x) =
(P ′′

N(x)(1 − x) − P ′

N(x))(x − xj) − P ′

N(x)(1 − x)

(x − xj)2
(ax + b) +

P ′

N(x)(1 − x)

(x − xj)
a,

ĥ′

j(−1) = 0 ⇒ (2P ′′

N(−1) − P ′

N(−1))(−1 − xj) − 2P ′

N(−1)

(1 + xj)2
(b − a) +

2P ′

N(−1)

(−1 − xj)
a = 0.
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This simplifies to give

[

−(2P ′′

N (−1) − P ′

N (−1)) − 2P ′

N(−1)

(1 + xj)

]

(b − a) − 2P ′

N(−1)a = 0. (D.2)

At this point we make use of some well-known properties of Legendre polynomials:

PN(±1) = (±1)N ,

P ′

N(±1) = ±1

2
N(N + 1)(±1)N , (D.3)

P ′′

N(±1) =
1

8
N(N + 1)(N 2 + N − 2)(±1)N .

So we find that

2P ′′

N(−1) − P ′

N(−1) = (−1)N

(

N(N + 1)

2

)2

.

And thus we find that Eq. (D.2) becomes
[

−(−1)N

(

N(N + 1)

2

)2

+ (−1)N N(N + 1)

(1 + xj)

]

(b − a) + (−1)NN(N + 1)a = 0.

This simplifies to

[

−N(N + 1)

4
+

1

(1 + xj)

]

(b − a) + a = 0,

or
[

xj

1 + xj
+

N(N + 1)

4

]

a +

[

1

(1 + xj)
− N(N + 1)

4

]

b = 0.

The second relation between a and b is:

b

a
= −

[
xj

1+xj
+ N(N+1)

4
]

[ 1
(1+xj )

− N(N+1)
4

]
=

N(N + 1)(1 + xj) + 4xj

N(N + 1)(1 + xj) − 4
. (D.4)

When we use this relation in Eq. (D.1), we obtain

P ′′

N(xj)(1 − xj)(axi + b) = P ′′

N (xj)(1 − xj)

(

axj +
N(N + 1)(1 + xj) + 4xj

N(N + 1)(1 + xj) − 4
a

)

= 1,

which yields the expression for a

a =
1

P ′′

N(xj)(1 − xj)
· N(N + 1)(1 + xj) − 4

N(N + 1)(1 + xj)2
,
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and together with Eq. (D.4) the factor b is found:

b =
1

P ′′

N(xj)(1 − xj)
· N(N + 1)(1 + xj) + 4xj

N(N + 1)(1 + xj)2
.

The new Lagrange interpolant in Eq. (3.54) may now be written in the form

ĥj(x) =
P ′

N(x)(1 − x)

P ′′

N(xj)(x − xj)
· N(N + 1)(1 + xj)(1 + x) − 4(x − xj)

N(N + 1)(1 + xj)(1 − x2
j)

, 1 ≤ j ≤ N − 1.

(D.5)

Calculation of ĥN(x)

Again, the first property in Eq. (3.59) gives a relation between c and d:

ĥN(xN ) = 1 ⇒ P ′

N(1)(c + d) = 1,

or, using the properties listed in Eqs. (D.3),

c + d =
2

N(N + 1)
. (D.6)

We use the second property Eq. (3.60) to find the second relation between c and d:

ĥ′

N(x) = P ′′

N (x)(cx + d) + P ′

N(x)c,

ĥ′

N(−1) = 0 ⇒ P ′′

N(−1)(d − c) + P ′

N(−1)c = 0.

With the properties in Eqs. (D.3) this yields

N2 + N + 2

4
c =

N2 + N − 2

4
d ⇒ d

c
=

N2 + N + 2

N2 + N − 2
. (D.7)

Combining Eqs. (D.6) and (D.7) provides the factors c and d:

c =
N2 + N − 2

N2(N + 1)2
,

d =
N2 + N + 2

N2(N + 1)2
.

The Lagrange interpolant ĥN(x) is now, according to Eq. (3.57)

ĥN (x) =
P ′

N(x)

N2(N + 1)2
· [N(N + 1)(1 + x) + 2(1 − x)]. (D.8)
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Calculation of d̂ij, 1 ≤ j ≤ N − 1

The derivative matrix

d̂ij = ĥ′

j(xi), (D.9)

will now be calculated, again considering the cases 1 ≤ j ≤ N − 1 and j = N sepa-

rately. To shorten the equations in this section, we introduce the following factors,

that are independent of x:

A = N(N + 1)(1 + xj),

B = N(N + 1)PN(xj). (D.10)

Now ĥj(x) can be written as

ĥj(x) =
P ′

N(x)(x2 − 1)

B
· [ 1

(x − xj)
− 4

A(1 + x)
]. 1 ≤ j ≤ N − 1.

Making use of the property of the Legendre polynomials that

d

dx
(P ′

N(x)(1 − x2)) + N(N + 1)PN(x) = 0, (D.11)

the derivative of ĥj(x) with respect to x can be expressed as

Bĥ′

j(x) =P ′

N (x)(1 − x2)

[

1

(x − xj)2
− 4

A(1 + x)2

]

+

N(N + 1)PN(x)

[

1

x − xj

− 4

A(1 + x)

]

.

Evaluating this derivative at x = xi, where i 6= j and 1 ≤ i ≤ N − 1 yields

ĥ′

j(xi) =
PN(xi)

PN(xj)

[

1

xi − xj

− 4

N(N + 1)(1 + xj)(1 + xi)

]

, i 6= j, 1 ≤ i, j ≤ N − 1.

(D.12)

When x = xj the derivative can be calculated by applying l’Hôpitals rule:

lim
x→xj

Bĥ′

j(x) = lim
x→xj

[

P ′

N (x)(1 − x2) + N(N + 1)PN(x)(x − xj)

(x − xj)2

]

+

−P ′

N (xj)(1 − x2
j)

4

A(1 + xj)2
− N(N + 1)PN(xj)

4

A(1 + xj)

= lim
x→xj

[

N(N + 1)P ′

N(x)(x − xj)

2(x − xj)

]

− PN(xj)
4

(1 + xj)2
.
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So finally we find an expression for the derivative ĥ′

j(xi) at i = j:

ĥ′

j(xi) = − 4

N(N + 1)(1 + xj)2
, 1 ≤ i = j ≤ N − 1.

At x = xN = +1 the derivative becomes

ĥ′

j(+1) =
1

PN (xj)

[

1

(1 − xj)
− 4

2N(N + 1)(1 + xj)

]

, 1 ≤ j ≤ N − 1,

which is in fact, Eq. (D.12) with i = N , so this is not a special case. Instead we may

write:

ĥ′

j(xi) =
PN(xi)

PN(xj)

[

1

(xi − xj)
− 4

N(N + 1)(1 + xj)(1 + xi)

]

, i 6= j,

1 ≤ j ≤ N − 1,

1 ≤ i ≤ N.

(D.13)

At x = x0 = −1 we check if this approach results in a zero derivative

lim
x→−1

Bĥ′

j(x) = lim
x→−1

[−4P ′

N(x)(1 − x2) − 4N(N + 1)PN(x)(1 + x)

A(1 + x)2

]

+

−N(N + 1)PN(−1)
1

(1 + xj)

= lim
x→−1

[−4N(N + 1)P ′

N(x)(1 + x)

2A(1 + x)

]

− N(N + 1)(−1)N

(1 + xj)

=
−2P ′

N(−1)

(1 + xj)
− N(N + 1)(−1)N

(1 + xj)

= −2
−N(N + 1)(−1)N

2(1 + xj)
− N(N + 1)(−1)N

(1 + xj)
= 0. (D.14)

Calculation of d̂iN

The derivative of ĥN (x) is found to be

ĥ′

N(x) =
P ′′

N(x)

N(N + 1)

[

(x + 1) +
2(1 − x)

N(N + 1)

]

+
P ′

N(x)

N(N + 1)

[

1 − 2

N(N + 1)

]

. (D.15)

At x = xi, 1 ≤ i ≤ N − 1, this expression becomes

ĥ′

N (xi) =
P ′′

N(xi)

N(N + 1)

[

(xi + 1) +
2(1 − xi)

N(N + 1)

]

, 1 ≤ i ≤ N − 1,
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which may be rewritten as

ĥ′

N(xi) = PN(xi)

[

1

(xi − 1)
− 2

N(N + 1)(1 + xi)

]

, 1 ≤ i ≤ N − 1. (D.16)

At x = xN = +1 we find

ĥ′

N(+1) =
2P ′′

N(1)

N(N + 1)
+

PN(1)

N(N + 1)

[

1 − 2

N(N + 1)

]

= (N2 + N − 2)

[

1

4
+

1

2N(N + 1)

]

=
(N2 + N − 2)(N 2 + N + 2)

4N(N + 1)
. (D.17)

Again a check is performed on the derivative at x = x0 = −1

ĥ′

N (−1) =
4P ′′

N(−1)

N2(N + 1)2
+

PN(−1)

N(N + 1)

[

1 − 2

N(N + 1)

]

=
N2 + N − 2

2N(N + 1)
(−1)N − N2 + N − 2

2N(N + 1)
(−1)N = 0. (D.18)

Gathering the evidence and the numerical weights

To summarize, the total form of the Lagrange interpolant is given again as

ĥj(x) =
P ′

N(x)(1 − x)

P ′′

N(xj)(x − xj)
· N(N + 1)(1 + xj)(1 + x) − 4(x − xj)

N(N + 1)(1 + xj)(1 − x2
j)

, 1 ≤ j ≤ N − 1,

ĥN(x) =
P ′

N(x)

N2(N + 1)2
· [N(N + 1)(1 + x) + 2(1 − x)].

Together, these interpolants satisfy the properties

ĥj(xi) = 0, i 6= j, 1 ≤ i, j ≤ N

ĥj(xi) = 1, i = j, 1 ≤ i, j ≤ N,

ĥj(+1) = 0, j 6= N, 1 ≤ j ≤ N,

ĥ′

j(−1) = 0, 1 ≤ j ≤ N.
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The derivative matrix d̂ij is given by

d̂ij =







































































































































































0 i = 0, 1 ≤ j ≤ N − 1,

PN(xi)

PN(xj)

[

1

xi − xj

− 4

N(N + 1)(1 + xj)(1 + xi)

]

i 6= j, 1 ≤ i, j ≤ N − 1,

− 4

N(N + 1)(1 + xj)2
1 ≤ i = j ≤ N − 1,

1

PN(xj)

[

1

1 − xj
− 4

2N(N + 1)(1 + xj)

]

i = N, 1 ≤ j ≤ N − 1,

0 i = 0, j = N,

PN(xi)

[

1

xi − 1
− 2

N(N + 1)(1 + xi)

]

1 ≤ i ≤ N − 1, j = N,

(N2 + N − 2)(N 2 + N + 2)

4N(N + 1)
i = N, j = N.

(D.19)

When we use the following relation for Legendre polynomials

P ′′

N(xj)(1 − x2
j) + N(N + 1)PN(xj) = 0, 1 ≤ j ≤ N − 1, (D.20)

the Lagrange interpolants ĥj(x) and ĥN(x) can be rewritten in the form

ĥj(x) =
P ′

N (x)(x2 − 1)

N(N + 1)PN(xj)
·
[

1

x − xj

− 4

N(N + 1)(1 + xj)(1 + x)

]

, 1 ≤ j ≤ N − 1,

ĥN(x) =
P ′

N(x)(x2 − 1)

N(N + 1)
·
[

1

x − 1
− 2

N(N + 1)(x + 1)

]

= ĥj(x)|j=N ,

which enables us to make a comparison with the original Lagrange interpolant in Eq.

(3.52) very straightforwardly. In fact, the new interpolant ĥ and its derivative can be

expressed in terms of the original h:

ĥj(x) = hj(x) − 4(−1)N

N(N + 1)PN(xj)(1 + xj)
h0(x), 1 ≤ j ≤ N,
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and

d̂ij = dij −
4(−1)N

N(N + 1)PN(xj)(1 + xj)
di0, 1 ≤ j ≤ N.

This makes evaluating the weights for the modified interpolant easy:

ŵj = wj −
4(−1)N

N(N + 1)PN(xj)(1 + xj)
w0, 1 ≤ j ≤ N,

which may also be written as

ŵj =
2

N(N + 1)[PN(xj)]2

[

1 − 4(−1)NPN(xj)

N(N + 1)(1 + xj)

]

, 1 ≤ j ≤ N.

Repeating the whole exercise for an axis of symmetry at the other end of the domain,

j = N , the modified polynomial, derivative and weights are found to be

ĥj(x) = hj(x) +
4

N(N + 1)PN(xj)(−1 + xj)
h0(x), 0 ≤ j ≤ N − 1,

and

d̂ij = dij +
4

N(N + 1)PN(xj)(−1 + xj)
di0, 0 ≤ j ≤ N − 1,

and

ŵj = wj +
4

N(N + 1)PN(xj)(−1 + xj)
w0, 0 ≤ j ≤ N − 1.
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Appendix E

Calculation of LUST Shift Factors

Presented here is the derivation of the factors hij in the Locally-Upwinded Spectral

Technique (LUST). They can be found by solving the equation

PN+1(x) − hij(u · ∇)PN+1(x) +
h2

ij

2
(u · ∇)2PN+1(x) −

h3
ij

3!
(u · ∇)3PN+1(x) + ...

+We

(

(u · ∇)PN+1(x) − hij(u · ∇)2PN+1(x) +
h2

ij

2
(u · ∇)3PN+1(x)−

h3
ij

3!
(u · ∇)4PN+1(x) + ...

)

= 0,

(E.1)

at each GLL point in the parent element. The left-hand side of this equation is

a Taylor series expansion of (4.32) about the point x. The polynomial PN+1(x) is

defined by

PN+1(x) = (1 − ξ2)L′

N (ξ)(1 − η2)L′

N(η), (E.2)

which is zero at all GLL nodes in the parent element, since

(1 − ξ2
i )(1 − η2

j ) = 0, i = 0, N, j = 0, N, (E.3)

L′

N (ξi) = L′

N (ηj) = 0, 1 ≤ i, j ≤ N − 1. (E.4)

Now define the function F (ω) as

F (ω) = (1 − ω2)L′

N(ω). (E.5)
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The function PN+1(x) can then be written as

PN+1(x) = F (ξ)F (η). (E.6)

The convection terms in (E.1) can then be written in the form

(u · ∇)PN+1(x) = uF
′

(ξ)F (η) + vF (ξ)F
′

(η),

(u · ∇)2PN+1(x) = u2F
′′

(ξ)F (η) + v2F (ξ)F
′′

(η) + 2uvF
′

(ξ)F
′

(η),

(E.7)

(u · ∇)3PN+1(x) = u3F
′′′

(ξ)F (η) + v3F (ξ)F
′′′

(η) +

3u2vF
′′

(ξ)F
′

(η) + 3uv2F
′

(ξ)F
′′

(η),

(u · ∇)4PN+1(x) = u4F
′′′′

(ξ)F (η) + v4F (ξ)F
′′′′

(η) +

4u3vF
′′′

(ξ)F
′

(η) + 4uv3F
′

(ξ)F
′′′

(η) + 6u2v2F
′′

(ξ)F
′′

(η).

Since F (ω) = 0 for ω = ξi, i = 0, ..., N , we have

(uN · ∇)PN+1(xij) = 0,

(uN · ∇)2PN+1(xij) = 2uvF
′

(ξi)F
′

(ηj),

(uN · ∇)3PN+1(xij) = 3u2vF
′′

(ξi)F
′

(ηj) + 3uv2F
′

(ξi)F
′′

(ηj),

(uN · ∇)4PN+1(xij) = 4u3vF
′′′

(ξi)F
′

(ηj) + 4uv3F
′

(ξi)F
′′′

(ηj) + 6u2v2F
′′

(ξi)F
′′

(ηj),

After division by (uN · ∇)2PN+1(xij), the expression Taylor expansion (E.1) reduces

to the following quadratic equation in hij

hij

2
−

h2
ij

6

(uN · ∇)3PN+1(xij)

(uN · ∇)2PN+1(xij)

+ We

(

−1 +
hij

2

(uN · ∇)3PN+1(xij)

(uN · ∇)2PN+1(xij)
−

h2
ij

6

(uN · ∇)4PN+1(xij)

(uN · ∇)2PN+1(xij)

)

= 0,

where we have neglected higher-order terms. After rearrangement this equation be-

comes

−
h2

ij

6

(

(uN · ∇)3PN+1(xij)

(uN · ∇)2PN+1(xij)
+We

(uN · ∇)4PN+1(xij)

(uN · ∇)2PN+1(xij)

)

+
hij

2

(

1 + We
hij

2

(uN · ∇)3PN+1(xij)

(uN · ∇)2PN+1(xij)

)

− We = 0.
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Substituting the expressions in terms of F (ξ) and F (η) for the streamline derivatives

yields

−
h2

ij

6

(

3

2
uij

F
′′

(ξi)

F ′(ξi)
+

3

2
vij

F
′′

(ηj)

F ′(ηj)
+ 2Weu2

ij

F
′′′

(ξi)

F ′(ξi)
+ 2Wev2

ij

F
′′′

(ηj)

F ′(ηj)

+ 3Weuijvij
F

′′

(ξi)

F ′(ξi)

F
′′

(ηj)

F ′(ηj)

)

+
hij

2

(

1 +
3

2
Weuij

F
′′

(ξi)

F ′(ξi)
+

3

2
Wevij

F
′′

(ηj)

F ′(ηj)

)

− We = 0.

(E.8)

Using the property of the Legendre polynomials

(1 − ω2)L′′

N(ω) − 2xL′

N (ω) + N(N + 1)LN (ω) = 0, (E.9)

expressions for the factors F
′′

(ωi)

F ′(ωi)
and F

′′′

(ωi)

F ′(ωi)
can be found. In particular, we have

F
′′

(ωi)

F ′(ωi)
=

L
′

N(ωi)

LN(ωi)
=



























−1
2
N(N + 1) i = 0,

0 1 ≤ i ≤ N − 1,

+1
2
N(N + 1) i = N,

(E.10)

F
′′′

(ωi)

F ′(ωi)
=

L
′′

N(ωi)

LN(ωi)
=



























1
8
N(N + 1)(N 2 + N − 2) i = 0,

−N(N+1)

1−ω2
i

1 ≤ i ≤ N − 1,

1
8
N(N + 1)(N 2 + N − 2) i = N.

(E.11)

For internal GLL nodes (ξi, ηj), 1 ≤ i, j ≤ N − 1, the quadratic equation from which

hij is determined, is now found to be

2WeN(N + 1)

3

(

u2
ij

1 − ξ2
+

v2
ij

1 − η2

)

h2
ij + hij − 2We = 0. (E.12)

Substitution of the correct entries from (E.10) and (E.11) into (E.8) results in similar

expressions for calculation of hij on edges of elements, and corners of elements. This

however can sometimes result in a negative discriminant for the quadratic equation

for hij. In this case the factors are calculated using a the Taylor series truncated one
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order lower, i.e.

PN+1(x) − hij(u · ∇)PN+1(x) +
h2

ij

2
(u · ∇)2PN+1(x)

+ We

(

(u · ∇)PN+1(x) − hij(u · ∇)2PN+1(x) +
h2

ij

2
(u · ∇)3PN+1(x)

)

= 0.

(E.13)
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Appendix F

Discretization with LUST

The discretization of one term in the weak formulation of the term u · ∇τ will be

presented for the Galerkin and using LUST methods. This is an example of how all

the terms in the constitutive equation can be discretized, as long as no integration

by parts is performed on the weak formulation.

The weak form of the convection term u ∂τxx

∂x
, after transformation from the physical

coordinates (x, y) to the computational space (ξ, η) on the parent element, is given

by

I =

∫

D

u(ξ, η)

(

∂y
∂η

∂
∂ξ

− ∂y
∂ξ

∂
∂η

det(J)

)

τxx(ξ, η)φ(ξ, η) |det(J)| dξdη. (F.1)

When the first term ∂y
∂η

∂
∂ξ

is approximated by the Gauss-Lobatto-Legendre rule we

find

Ĩ =
N
∑

p=0

N
∑

q=0

f(ξp, ηq)φ(ξp, ηq) |det(J)|pq wpwq, (F.2)

where f(ξp, ηq) is given by

f(ξp, ηq) = u(ξp, ηq)
∂y

∂η
(ξp, ηq)

1

det(J)pq

∂τxx

∂ξ
(ξp, ηq), (F.3)
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and when we substitute the spectral approximations for u and τxx we have

f(ξp, ηq) =
N
∑

m=0

N
∑

n=0

umnhm(ξp)hn(ηq)
∂y

∂η
(ξp, ηq)

1

det(J)pq

N
∑

k=0

N
∑

l=0

τxx
kl h′

k(ξp)hl(ηq)

= upq
∂y

∂η pq

1

det(J)pq

N
∑

k=0

τxx
kq h′

k(ξp).

(F.4)

For a particular test function φij, the expression (F.2) becomes

Ĩij =
N
∑

p=0

N
∑

q=0

f(ξp, ηq)φij(ξp, ηq) |det(J)|pq wpwq. (F.5)

This expression will now be written out for two different choices for the test function

φij.

GALERKIN

In the standard Galerkin formulation, the test function φij(ξ, η) is given by

φij(ξ, η) = hi(ξ)hj(η) (F.6)

The expression Ĩij can now be written as

Ĩij =
N
∑

p=0

N
∑

q=0

upq
∂y

∂η pq

1

det(J)pq

[

N
∑

k=0

τxx
kq h′

k(ξp)

]

hi(ξp)hj(ηq)|det(J)|pqwpwq

= uij
∂y

∂η ij

1

det(J)ij

[

N
∑

k=0

τxx
kj h′

k(ξi)

]

|det(J)|ijwiwj,

(F.7)

or, when using f(ξp, ηq)

Ĩij =
N
∑

p=0

N
∑

q=0

f(ξp, ηq)hi(ξp)hj(ηq)|det(J)|pqwpwq

= f(ξi, ηj)|det(J)|ijwiwj.

(F.8)

LUST

In the LUST method, the test function φij is redefined as

φij(ξ, η) = hi(ξ)hj(η) + hL
iju · ∇ (hi(ξ)hj(η)) , (F.9)
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where hL
ij is the LUST shift factor at (ξi, ηj). After inserting the spectral approxima-

tion for u, the test function φ is found to be

φij(ξ, η) = hi(ξ)hj(η)

+ hL
ij

[

N
∑

m=0

N
∑

n=0

umnhm(ξ)hn(η)

]

[

∂y

∂η pq

h′

i(ξ)hj(η)

detJpq

− ∂y

∂ξ pq

hi(ξ)h
′

j(η)

detJpq

]

+ hL
ij

[

N
∑

m=0

N
∑

n=0

vmnhm(ξ)hn(η)

]

[

∂x

∂ξ pq

hi(ξ)h
′

j(η)

detJpq
− ∂x

∂η pq

h′

i(ξ)hj(η)

detJpq

]

,

(F.10)

which can be simplified to

φij(ξ, η) = hi(ξ)hj(η)

+
hL

ijupq

detJpq

[

∂y

∂η pq

h′

i(ξ)hj(η) − ∂y

∂ξ pq

hi(ξ)h
′

j(η)

]

+
hL

ijvpq

detJpq

[

∂x

∂ξ pq

hi(ξ)h
′

j(η) − ∂x

∂η pq

h′

i(ξ)hj(η)

]

= hi(ξ)hj(η)

+
hL

ijh
′

i(ξ)hj(η)

detJpq

(

∂y

∂η
u − ∂x

∂η
v

)

pq

+
hL

ijhi(ξ)h
′

j(η)

detJpq

(

∂x

∂ξ
v − ∂y

∂ξ
u

)

pq

.

(F.11)

In analogy to (F.8) Ĩij can be expressed as

Ĩij =

N
∑

p=0

N
∑

q=0

f(ξp, ηq)hi(ξp)hj(ηq)|det(J)|pqwpwq

+
N
∑

p=0

N
∑

q=0

f(ξp, ηq)
hL

ijh
′

i(ξp)hj(ηq)

detJpq

(

∂y

∂η
u − ∂x

∂η
v

)

pq

|det(J)|pqwpwq

+

N
∑

p=0

N
∑

q=0

f(ξp, ηq)
hL

ijhi(ξp)h
′

j(ηq)

detJpq

(

∂x

∂ξ
v − ∂y

∂ξ
u

)

pq

|det(J)|pqwpwq

= f(ξi, ηj)|det(J)|ijwiwj

+
N
∑

p=0

f(ξp, ηj)h
L
ijh

′

i(ξp)

(

∂y

∂η
u − ∂x

∂η
v

)

pj

sgn(detJ)pjwpwj

+

N
∑

q=0

f(ξi, ηq)h
L
ijh

′

j(ηq)

(

∂x

∂ξ
v − ∂y

∂ξ
u

)

iq

sgn(detJ)iqwiwq.

(F.12)

231



Bibliography

[1] K. Atalik and R. Keunings. Non-linear temporal stability analysis of viscoelastic

plane channel flow using a fully-spectral method. J. Non-Newtonian Fluid Mech.,

102:299–319, 2002.

[2] B. Bernstein, E. A. Kearsley, and L. J. Zappas. A study of stress relaxation with

finite strain. Trans. Soc. Rheol., 7:391–410, 1963.

[3] G. B. Bishko, O. G. Harlen, T. C. B. McLeish, and T. M. Nicholson. Numerical

simulation of the transient flow of branched polymer melts through a planar

contraction using the ‘pom-pom’ model. J. Non-Newtonian Fluid Mech., 82:255–

273, 1999.

[4] R. J. Blackwell, T. C. B. McLeish, and O. G. Harlen. Molecular drag-strain

coupling in branched polymer melts. J. Rheol., 44:121–136, 2000.

[5] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formu-

lations for convection dominated flows with particular emphasis on the incom-

pressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Engng., 32:199–259,

1982.

[6] J. Cahouet and J. P. Chabard. Some fast 3D finite element solvers for the

generalized Stokes problem. Int. J. Numer. Meth. Fluids, 8:869–895, 1988.

232



[7] E. O. Carew, P. Townsend, and M. F. Webster. Taylor-Galerkin algorithms for

viscoelastic flow: application to a model problem. Num. Meth. Part. Diff. Eqns.,

10:171–190, 1994.

[8] W. Couzy and M.O. Deville. A fast schur complement method for the spectral

element discretization of the incompressible Navier-Stokes equations. J. Comput.

Phys., 116:135–142, 1995.

[9] P. G. de Gennes. Reptation of a polymer chain in the presence of fixed obstacles.

J. Chem. Phys, 5(2):572–579, 1971.

[10] M. Deville, P. F. Fischer, and E. Mund. Higher order methods for incompressible

fluid flow. Cambridge, 2002.

[11] M. Doi and S. F. Edwards. The theory of polymer dynamics. Oxford University

Press, Oxford, 1986.

[12] M. Dryja and O. B. Widlund. Domain decomposition algorithms with small

overlap. SIAM J. Sci. Comput., 15:604–620, 1994.

[13] X. Escriva, E. Leriche, and T. N. Phillips. Preconditioned uzawa algorithm for

the velocity-pressure-stress formulation of viscoelastic flow problems. J. Sci.

Comput., 17:219–229, 2002.

[14] N. Fiétier. Numerical simulation of viscoelastic fluid flows by spectral ele-

ment methods and time-dependent algorithms. PhD thesis, Ecole Polytechnique

Fédérale de Lausanne, Switzerland, 2002.

[15] N. Fiétier and M. O. Deville. Time-dependent algorithms for the simulation of

viscoelastic flows with spectral element methods: application and stability. To

appear in J. Comput. Phys., 2003.

233



[16] P.F. Fisher. An overlapping Schwarz method for spectral element solution of the

incompressible Navier-Stokes equations. J. Comput. Phys., 133:84–101, 1997.

[17] M. I. Gerritsma and T. N. Phillips. Discontinuous spectral element approxima-

tions for the velocity-pressure-stress formulation of the Stokes problem. Int. J.

Numer. Meth. Engng., 43:1404–1419, 1998.

[18] M. I. Gerritsma and T. N. Phillips. Compatible spectral approximations for

the velocity-pressure-stress formulation of the Stokes problem. SIAM J. Sci.

Comput., 20:1530–1550, 1999.

[19] M. I. Gerritsma and T. N. Phillips. On the use of characteristic variables in

viscoelastic flow problems. IMA J. Appl. Math., 66(2):127–147, 2001.

[20] H. Giesekus. A simple constitutive equation for polymer fluids based on the

concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid

Mech., 11:69–109, 1982.
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