I will present some recent results concerning the higher gradient integrability of σ -harmonic functions u with discontinuous coefficients σ , i.e. weak solutions of div($\sigma \nabla u$) = 0. When σ is assumed to be symmetric, then the optimal integrability exponent of the gradient field is known thanks to the work of Astala and Leonetti & Nesi. I will discuss the case when only the ellipticity is fixed and σ is otherwise unconstrained and show that the optimal exponent is attained on the class of two-phase conductivities $\sigma : \Omega \subset \mathbb{R}^2 \rightarrow {\sigma 1, \sigma 2} \subset \mathbb{M}^{2\times 2}$. The optimal exponent is established, in the strongest possible way of the existence of so-called exact solutions, via the exhibition of optimal microgeometries. (Joint work with V. Nesi and M. Ponsiglione.)