

SIAM Student Chapter Day, Cardiff, January 21st 2013

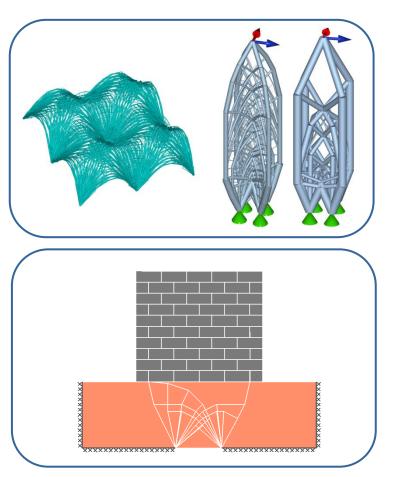
Application of Layout Optimization to Engineering Analysis and Design Problems

Matthew Gilbert

Dept. Civil & Structural Engineering University of Sheffield, UK

Contents

- Industry context
- What is 'layout optimization'?
- Applications:
 - I. Design optimization
 - II. Collapse analysis
- Current work
- Conclusions



Industry context

Industry context

The UK construction industry is worth
Set the set of the set of

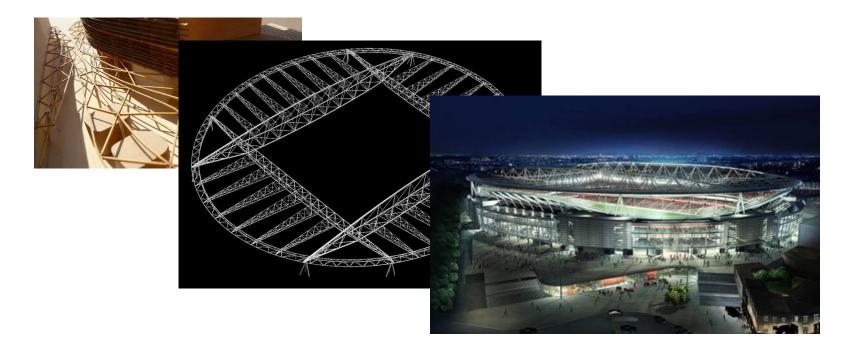
Half spent on new constnuction, mostly 'one off' projects

 Half spent on existing infrastructure, often dealing with 'one off' structures and 'difficult' materials (e.g. masonry)

Typically limited time to get highly refined solutions, but need rapid & effective means of getting close...

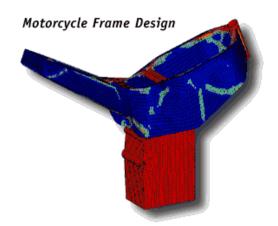
Existing tools for design

• Laborious manual process, e.g. for layout of elements forming stadium roof:



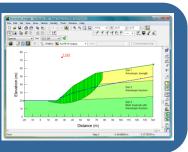
Existing tools for design (cont.)

- Automated methods very rarely used by structural engineers for roofs etc.
- Continuum-based methods (e.g. see below) unlikely to be suitable



Existing tools for collapse analysis

'Traditional': based on hand analysis solutions etc.

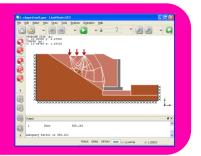


(potentially embedded in simple programs / spreadsheets etc.)

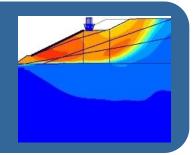
More:

- complex
- time consuming
- input parameters
- expertise required
- accurate [potentially at least!]

'Mainstream': based on computational <u>limit analysis</u>?

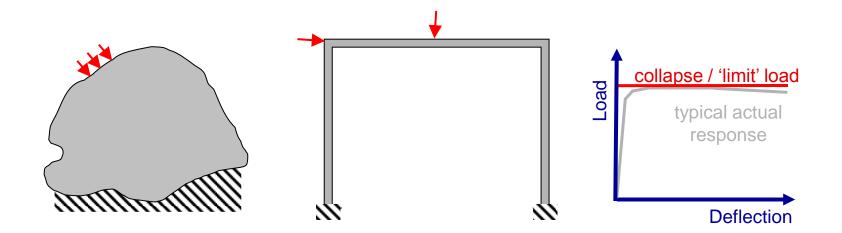


'Advanced': based on nonlinear finite elements etc.



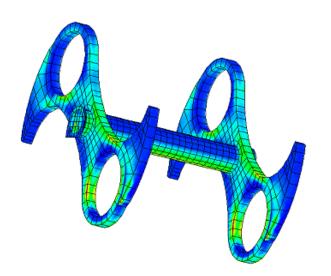
What is 'limit analysis'?

• A method of estimating the maximum load sustainable by a body or structure

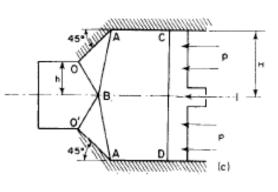


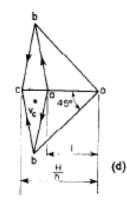
Elastic vs. plastic (limit) analysis

 Elastic analysis methods: finite elements have made analysis straightforward



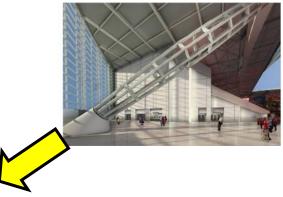
 Plastic (limit) analysis methods: tools are much less well developed...



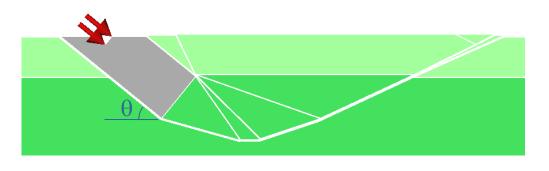


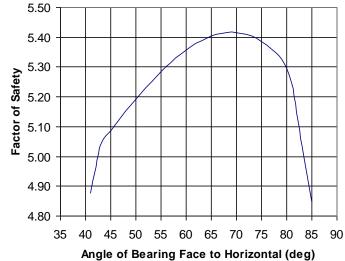
Example: stadium foundations

• Time-consuming **analysis** process to verify safety of proposed foundations



Example: stadium foundations [2]



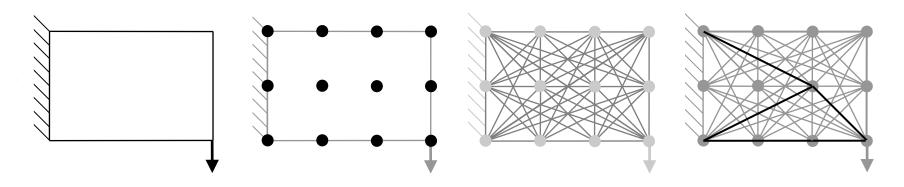


(analysis undertaken on LFC stadium foundations by Laing O'Rourke)

What is 'layout optimization'?

What is 'layout optimization'?

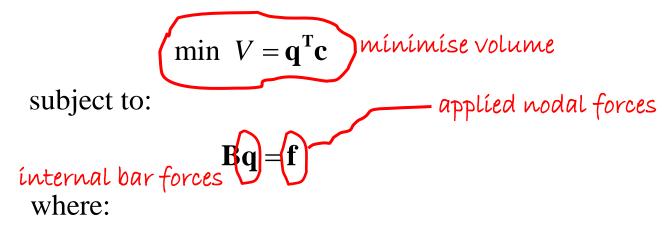
• Technique originally devised in the 1960s to find topology of minimum weight trusses:



(after Dorn, Gomory, and Greenberg, 1964)

Example I: design optimization (of trusses)

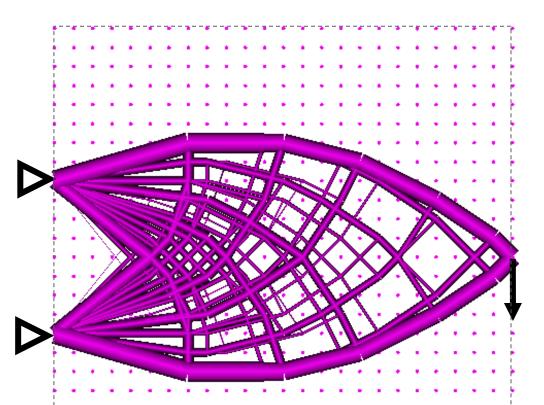
Primal Linear Programming formulation: trusses



$$q_i^+, \ q_i^- \ge 0$$

 $\mathbf{c}^{\mathbf{T}} = \{ l_1 / \sigma_1^+, -l_1 / \sigma_1^-, l_2 / \sigma_2^+, -l_2 / \sigma_2^-, \dots - l_m / \sigma_m^- \}$
 $\mathbf{B} = \text{equilibrium matrix}$

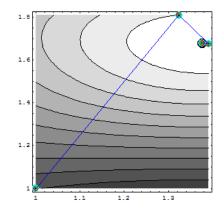
Example: Hemp cantilever



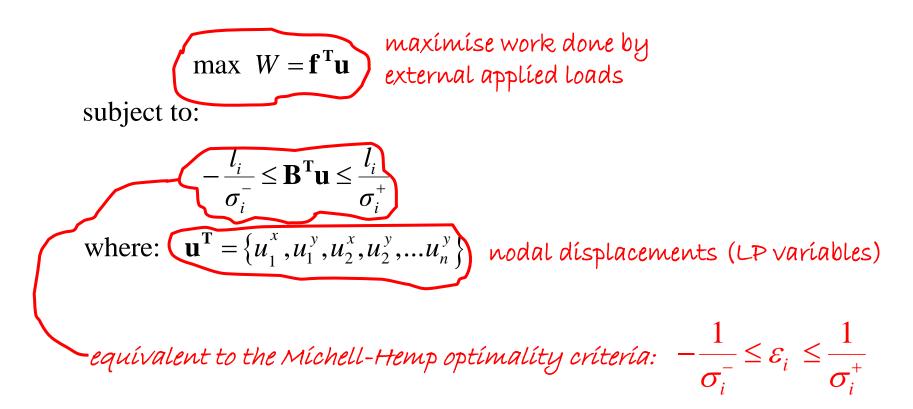
But: *n*(*n*-1)/2 potential connections (where *n* is number of nodes) means problem quickly becomes very large!

On the use of 'adaptivity'...

- Mathematical programming problems can quickly become computationally expensive
- Sheffield approach:
 - 1. Formulate simple reduced problem, ideally solvable using LP (e.g. MOSEK), then adaptively refine
 - 2. General software framework to take advantage of problem similarities



Dual Linear Programming formulation: trusses



Adaptive solution...

- **Procedure** (Gilbert & Tyas, Eng. Comp. 2003):
 - 1. Connect nodes to adjacent nodes only (say) \Rightarrow obtain an initial sub-problem
 - 2. Solve (using LP)
 - 3. Identify which potential members most violate the Michell-Hemp Optimality Criterion:

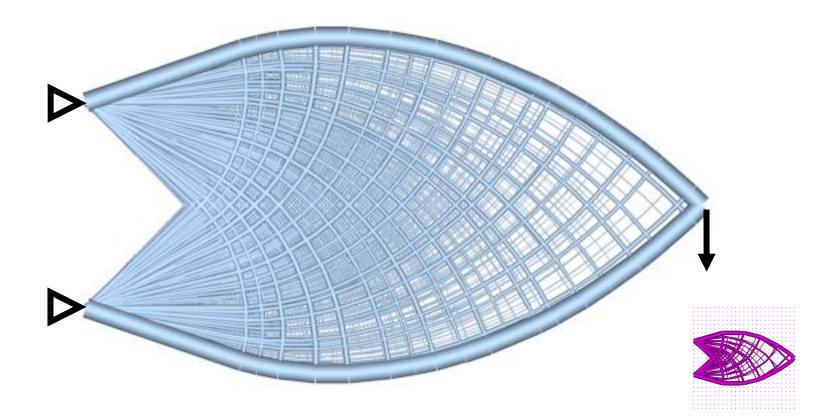
$$-\frac{1}{\sigma_i^-} \le \varepsilon_i \le \frac{1}{\sigma_i^+}$$

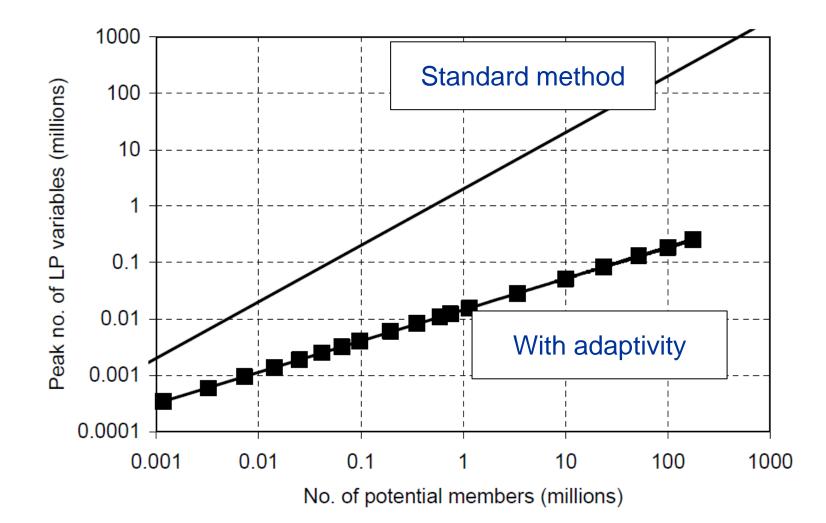
4. Add members

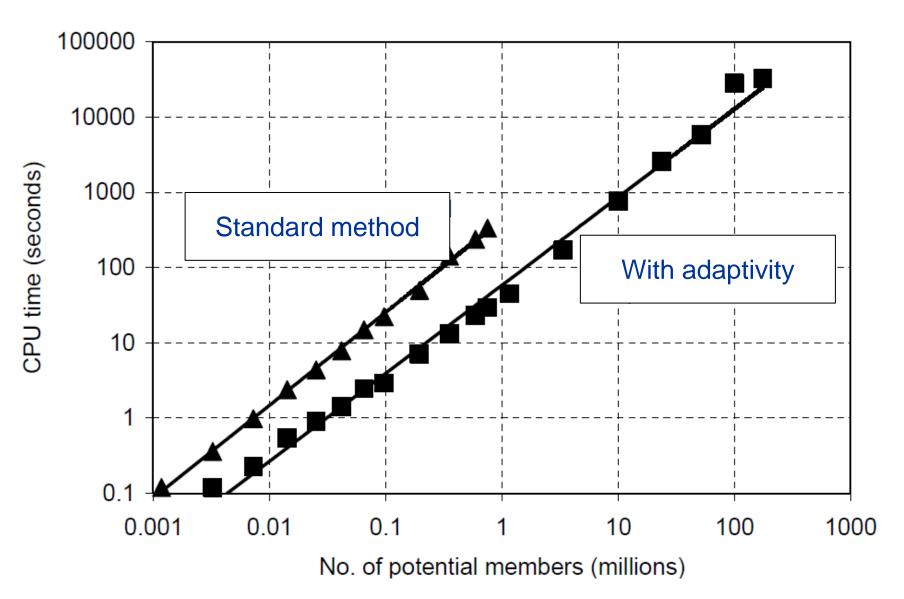
 \Rightarrow obtain a revised sub-problem

5. Repeat from 2.

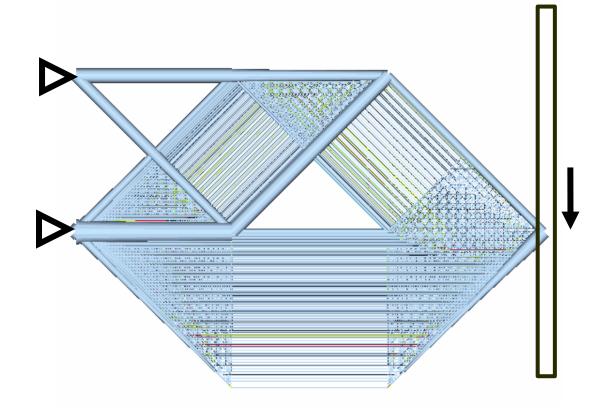
Example: Hemp cantilever







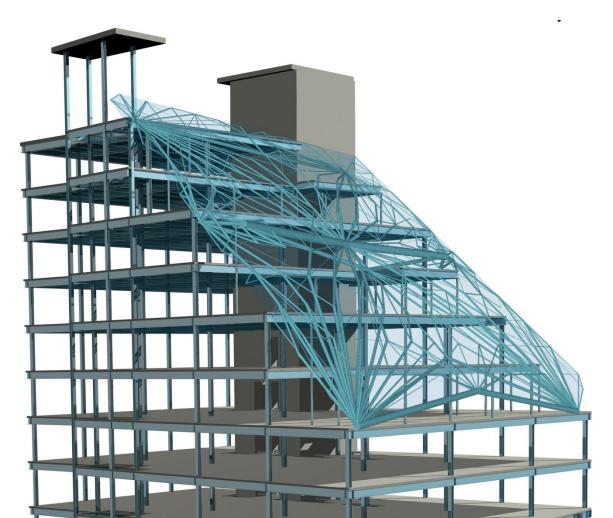
Progress of adaptive solution



Proof of Optimality

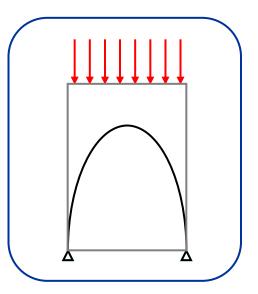
 If, after an iteration, there are no potential members which violate the Michell-Hemp optimality criterion, by definition the current optimal solution must also be the optimal solution for the fully connected ground structure.

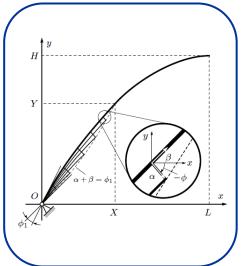
Extension: roof loading



Extension: roof loading

- Issue over where loads applied
- But problems validating 'transmissible' load model...
- Led to interesting academic diversion, with surprising outcome...
- ...overturned centuries old belief that parabolic form most optimal to carry a uniform load (Darwich, Gilbert & Tyas, SMO 2010; Tyas, Pichugin & Gilbert, Proc. R. Soc. A. 2011)





Numerical results, $\sigma = 100\sigma^+$:

%diff	Volume	Nodal divs, <i>n_x</i>	%diff	Volume	Nodal divs, <i>n_x</i>
0.0304%	0.577526	320	15.47%	0.666666	2
0.0282%	0.577513	340	1.058%	0.583459	20
0.0266%	0.577504	360	0.4948%	0.580207	40
0.0249%	0.577494	380	0.2433%	0.578755	60
0.0232%	0.577484	400	0.1693%	0.578328	80
0.0216%	0.577475	420	0.1385%	0.578150	100
0.0206%	0.577469	440	0.1105%	0.577988	120
0.0195%	0.577463	460	0.0867%	0.577851	140
0.0185%	0.577457	480	0.0718%	0.577765	160
0.0176%	0.577452	500	0.0637%	0.577718	180
0.0142%	0.577432	600	0.0578%	0.577684	200
0.0112%	0.577415	700	0.0505%	0.577642	220
0.0095%	0.577405	800	0.0453%	0.577612	240
0.0081%	0.577397	900	0.0407%	0.577585	260
0.0071%	0 577301	1000	0.0362%	0.577559	280
0.0000%	0.577350	∞*	0.0329%	0.577540	300

* Extrapolated volume (see Appendix for details)

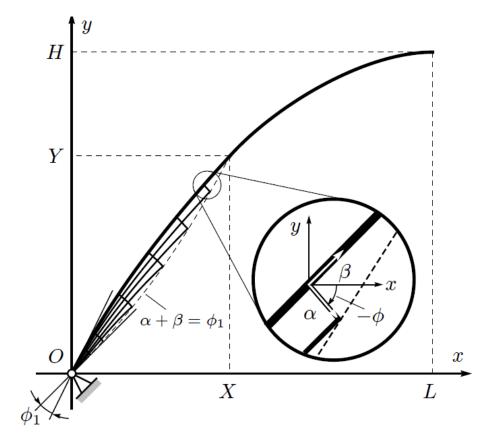
Numerical results, $\sigma = \sigma^+$:

Part of $\sigma = 100\sigma^+$ structure from (a) shown for comparison

Nodal divs, <i>n_x</i>	Volume	%diff	Nodal divs, <i>n</i> x	Volume	%diff
2	0.666666	15.47%	320	0.575512	-0.3184%
20	0.583459	1.058%	340	0.575499	-0.3206%
40	0.578446	0.1898%	360	0.575486	-0.3229%
60	0.577022	-0.0569%	380	0.575476	-0.3246%
80	0.576462	-0.1539%	400	0.575466	-0.3264%
100	0.576200	-0.1992%	420	0.575457	-0.3279%
120	0.576006	-0.2328%	440	0.575451	-0.3290%
140	0.575867	-0.2569%	460	0.575445	-0.3300%
160	0.575782	-0.2716%	480	0.575438	-0.3312%
180	0.575724	-0.2817%	500	0.575434	-0.3319%
200	0.575672	-0.2907%	600	0.575414	-0.3354%
220	0.575632	-0.2976%	700	0.575397	-0.3383%
240	0.575600	-0.3032%	800	0.575387	-0.3400%
260	0.575571	-0.3082%	900	0.575379	-0.3414%
280	0.575547	-0.3123%	1000	0 575373	0.3425%
300	0.575526	-0.3160%	~~*	0.575338	-0.3485%

* Extrapolated volume (see Appendix for details)

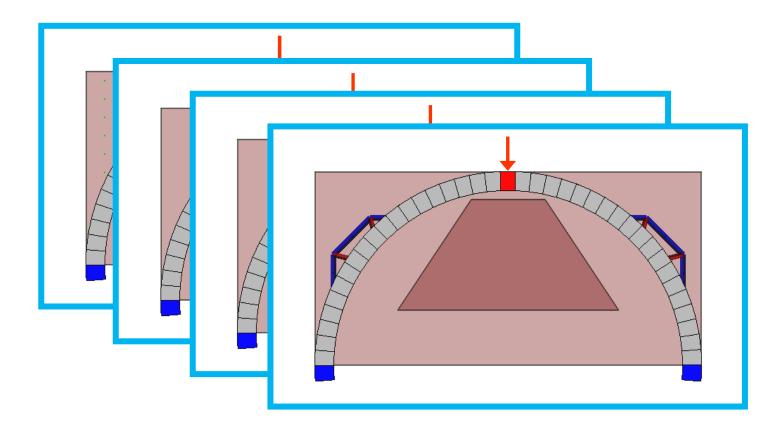
Analytical solution (0.3495% lighter than parabolic arch)



(Tyas, Pichugin & Gilbert, Proc. R. Soc. A. 2011)

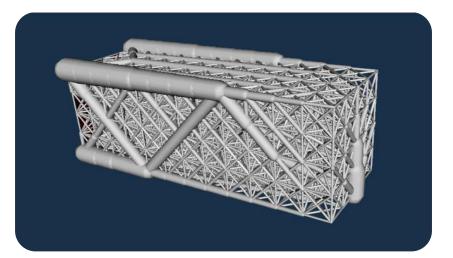
Possibilities: retrofit design

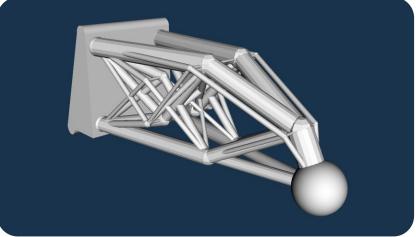
• Example - strengthen arch to carry large load:



Possibilities: additive manufacture



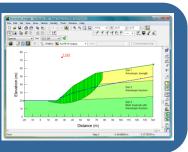




Example II: collapse analysis of continua

Existing tools for collapse analysis

'Traditional': based on hand analysis solutions etc.

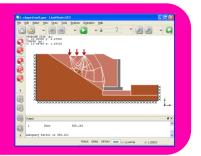


(potentially embedded in simple programs / spreadsheets etc.)

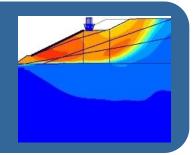
More:

- complex
- time consuming
- input parameters
- expertise required
- accurate [potentially at least!]

'Mainstream': based on computational <u>limit analysis</u>?

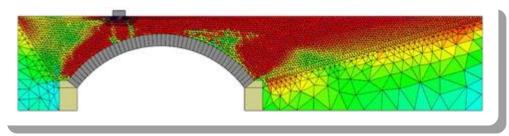


'Advanced': based on nonlinear finite elements etc.



Limit analysis + finite elements

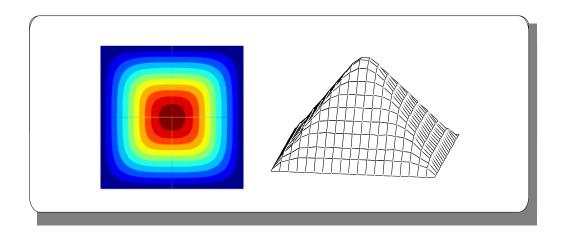
- Involves only strength parameters
- Powerful and flexible, but:
 - needs tailored meshes or high order elements accurate results OR adaptive refinement
 - output arguably lacks clarity of classical 'hand' based limit analysis:



• over 40 years since first paper in this field (Belytschko & Hodge, J. Appl. Mech. ASME, 1967), but still not widely used in industry...

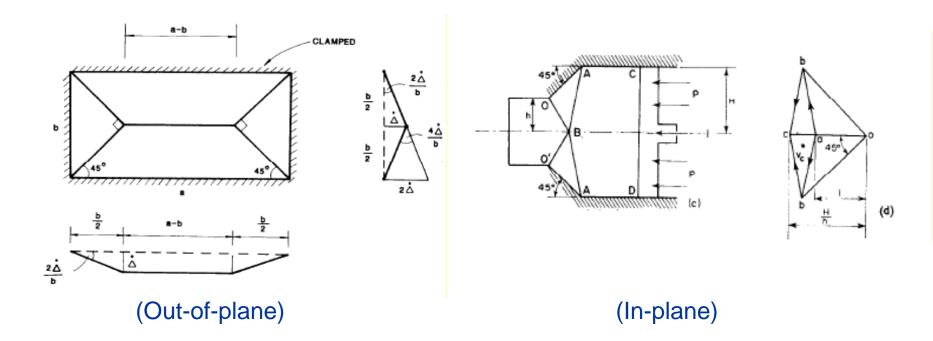
Alternative I: fully continuous

- Meshless methods have recently been explored:
 - Similar to finite element limit analysis but can overcome mesh problems
 - But somewhat complex and strict bounds not available (e.g. EFG plates: Le, Gilbert & Askes. IJNME 2009, 2010)



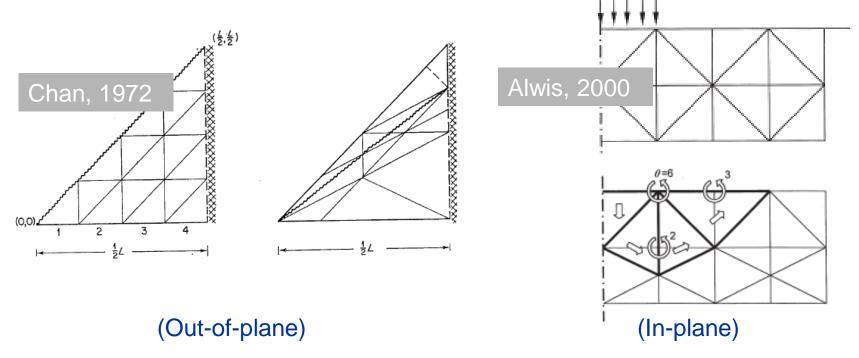
Alternative II: fully discontinuous

• E.g. can we just automate traditional 'hand' type analysis tools for continuum problems?



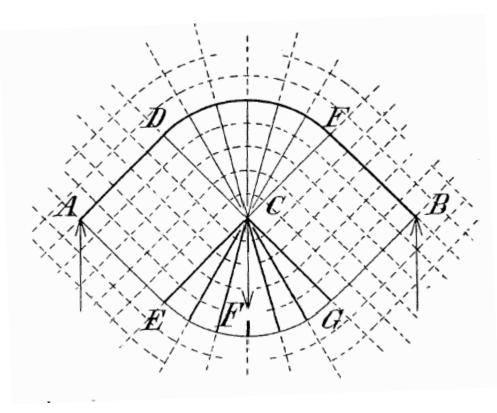
Alternative II: fully discontinuous

• Rigid element based formulations have been tried:



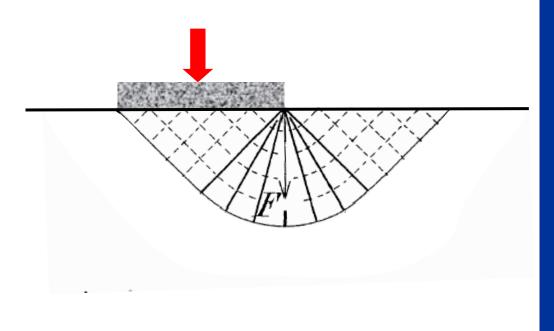
• But solutions highly dependent on element topology...

But lets rewind to Michell's seminal 1904 work...



- Slip lines in plane Tresca bodies & optimal 'Michell' trusses both comprise 'Hencky-Prandtl' nets
 - Orthogonal curvilinear coordinate systems
 - Analogy discovered by Hemp, Prager in 1950s (& me in 2000s!)
- ⇒ Should be possible to use layout optimisation for analysis problems...

But lets rewind to Michell's seminal 1904 work...



- Slip lines in plane Tresca bodies & optimal 'Michell' trusses both comprise 'Hencky-Prandtl' nets
 - Orthogonal curvilinear coordinate systems
 - Analogy discovered by Hemp, Prager in 1950s (& me in 2000s!)
- ⇒ Should be possible to use layout optimisation for analysis problems...

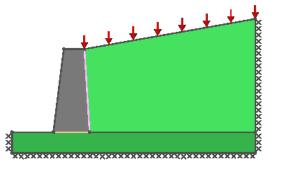
The analogy:

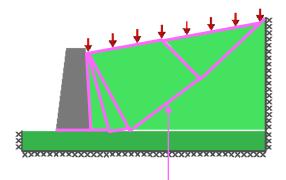
	Truss problem	Slip-line discontinuity problem
Problem variables	Internal bar forces	Slip displacements
Governing coefficient matrix	Equilibrium	Compatibility
Applied loads / displacements	External loads	Nodal displacements
Objective function	Minimise volume	Minimise work
Graphical analysis method	Maxwell force diagram	Hodograph (velocity diagram)

• Developed fairly recently (Smith & Gilbert, Proc. R. Soc. A. 2007)

The University Of Sheffield.

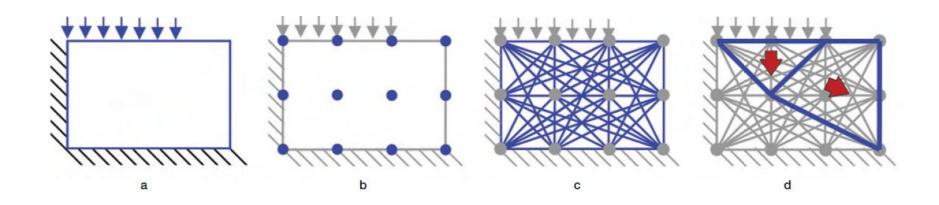
- Key = problem formulated in terms of lines of **discontinuity** (rather than rigid elements)
- The critical **layout** of these lines can be determined using **optimization** techniques



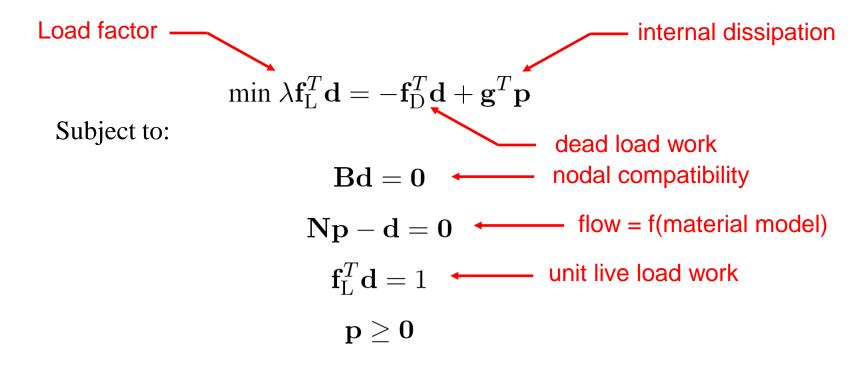


Discontinuity (slip-line)

How does DLO work: conceptual

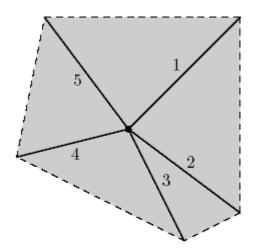


How does DLO work: mathematics

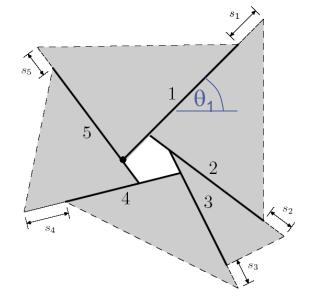


Variables: displacements in d and plastic multipliers in p

Nodal compatibility

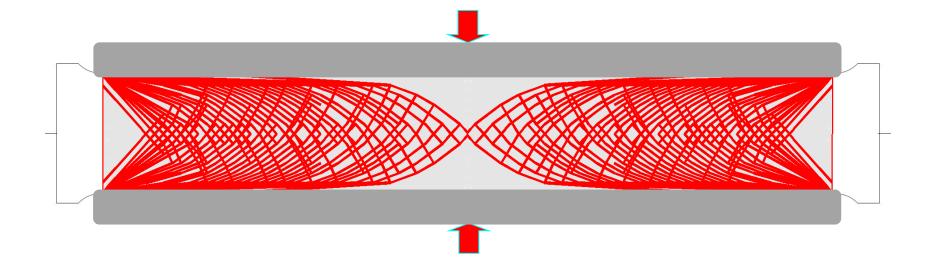


$$\sum_{i=1}^{5} s_i \cos \theta_i = 0$$
$$\sum_{i=1}^{5} s_i \sin \theta_i = 0$$



Implementation: MATLAB

 ≈150 line script for simple plane strain problems at: <u>http://cmd.shef.ac.uk/dlo</u>

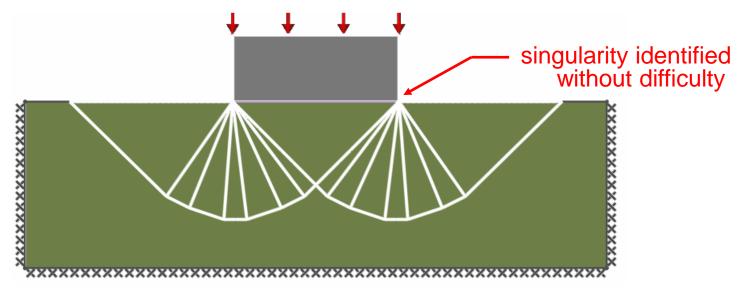


Implementation: industry tool

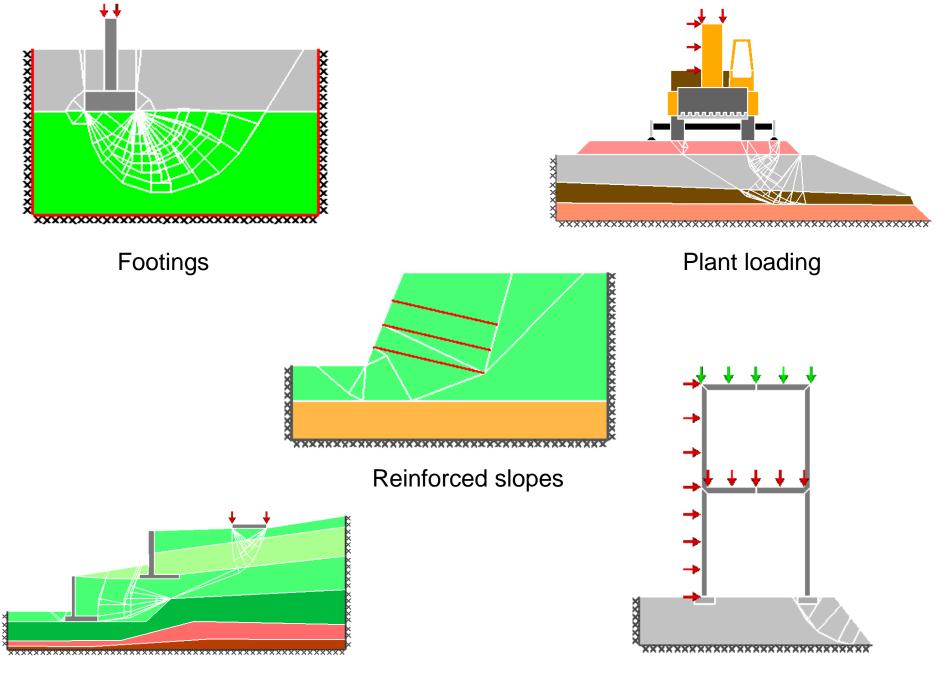
- Required developments (cf. MATLAB):
 - Multiple domains of general (non-convex) shape
 - Visualization of failure mechanisms
 - Free-body diagrams
 - Water pressures, etc, etc...
- Status:
 - 'LimitState:GEO' launched in 2008 now widely used across the world
 - Freely available for academic use (see: http://www.limitstate.com/geo)

Simple DLO example

• For 'Prandtl punch' problem, solution within 1% of exact solution $(2+\pi)$ in approx. 1 second:



(>100 other benchmarks available at limitstate.com/geo/validation)



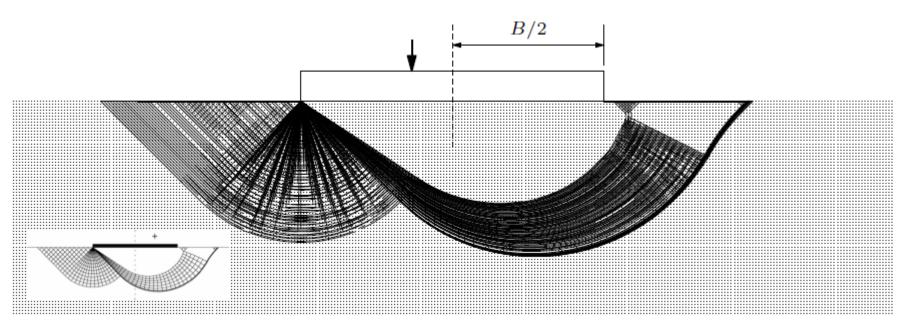
'Combined'

Soil-structure interaction

Current work

Current work: DLO + rotations

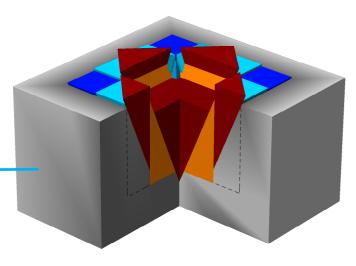
- Already considered rotations occurring at boundaries (Gilbert et al. Proc. ICE EACM, 2010)
- Now modelling arbitrary rotations with <u>curved slip-lines</u>
- Results look good (Smith & Gilbert, Geotechnique, submitted) :



Current work: 3D DLO

- Using 'edge based' formulation and <u>triangular slip-surfaces</u>
- Can now obtain solutions using Second Order Cone Programming
- Computationally costly, though reasonable results often obtainable with coarse discretizations, e.g. 3D bearing capacity:

	Bearing Capacity Factor		
Reference	Other	Lower bound	Upper bound
Skempton [2]	6.17 ^a		
Gourvenec et al. [3]			6.41
	5.91 ^b		
Michalowski [4]			6.56
Salgado et al. [5]		5.52	6.22
Present study			6.42
^a Empirical			

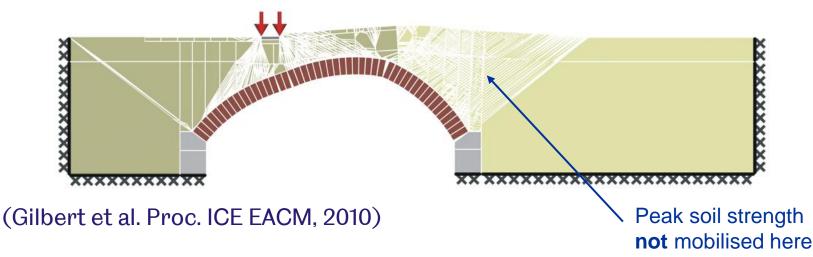


^a Empirical

^b Elasto-plastic finite element

Current work: soil-structure interaction

- Approx. 40% of UK bridge spans are masonry
- Up to 90% of load carrying capacity due to presence of soil backfill
- Limit analysis can be used to model soil and structure, but some difficulties arise:



Current work: soil-structure interaction

• Digital imaging and Particle Image Velocimetry (PIV) has potential to give a step-change in understanding

 Aiming to use optimization to automatically correlate model and test data (large EPSRC/Network Rail project now underway)

Conclusions

Conclusions

- Layout optimization is a powerful tool, for use in analysis and design
- Discontinuity layout optimization (DLO) is a powerful new computational limit analysis procedure
 - Typically involves solution of a linear optimization problem, which is easy to solve
 - Singularities are identified automatically
 - Now widely used in industry, and has the potential to form the basis of future mainstream collapse analysis tools
- DLO has been implemented in a short MATLAB script & also in the LimitState:GEO software both freely available for academic use

Acknowledgements

- People:
 - Colin Smith, Andy Tyas, Wael Darwich, Iain Haslam, Tom Pritchard, Sam Hawksbee, Dong Nguyen, Aleksey Pichugin
- Organizations:
 - EPSRC (UK Government Research Council)

Thank you for listening!