

SIAM Student Chapter Day, Cardiff, January 21st 2013

Application of Layout Optimization to Engineering Analysis and Design Problems

Matthew Gilbert

Dept. Civil & Structural Engineering University of Sheffield, UK

Contents

- Industry context
- What is 'layout optimization'?
- Applications:
	- I. Design optimization
	- II. Collapse analysis
- Current work
- **Conclusions**

Industry context

Industry context

• **The UK construction industry is worth >£100bn per annum (almost 10% of GDP):**

Half spent on new construction, mostly one off projects • **Half spent on existing infrastructure, often dealing with 'one off' structures and 'difficult' materials (e.g. masonry)**

Typically limited time to get highly refined solutions, but need rapid & effective means of getting close…

Existing tools for design

• Laborious manual process, e.g. for layout of elements forming stadium roof:

Existing tools for design (cont.)

- Automated methods very rarely used by structural engineers for roofs etc.
- Continuum-based methods (e.g. see below) unlikely to be suitable

Existing tools for collapse analysis

'Traditional': based on hand analysis solutions etc.

(potentially embedded in simple programs / spreadsheets etc.)

More:

- complex
- time consuming
- input parameters
- expertise required
- accurate [potentially at least!]

'Mainstream': based on computational limit analysis?

'Advanced': based on nonlinear finite elements etc.

What is 'limit analysis'?

• A method of estimating the maximum load sustainable by a body or structure

Elastic vs. plastic (limit) analysis

• Elastic analysis methods: finite elements have made analysis straightforward

Plastic (limit) analysis methods: tools are much less well developed…

Example: stadium foundations

• Time-consuming **analysis** process to verify safety of proposed foundations

Example: stadium foundations [2]

What is 'layout optimization'?

What is 'layout optimization'?

• Technique originally devised in the 1960s to find topology of minimum weight trusses:

(after Dorn, Gomory, and Greenberg, 1964)

Example I: design optimization (of trusses)

Primal Linear Programming

$$
q_i^+, q_i^- ≥ 0
$$

\n
$$
\mathbf{c}^T = \{l_1 / \sigma_1^+, -l_1 / \sigma_1^-, l_2 / \sigma_2^+, -l_2 / \sigma_2^-, ... -l_m / \sigma_m^-\}
$$

\n**B** = equilibrium matrix

Example: Hemp cantilever

But: *n*(*n*-1)/2 potential connections (where *n* is number of nodes) means problem quickly becomes very large!

On the use of 'adaptivity'…

- Mathematical programming problems can quickly become computationally expensive
- Sheffield approach:
	- 1. Formulate simple reduced problem, ideally solvable using LP (e.g. MOSEK), then adaptively refine
	- 2. General software framework to take advantage of problem similarities

Dual Linear Programming formulation: trusses

Adaptive solution…

- Procedure (Gilbert & Tyas, Eng. Comp. 2003):
	- 1. Connect nodes to adjacent nodes only (say) \Rightarrow obtain an initial sub-problem
	- 2. Solve (using LP)
	- 3. Identify which potential members most violate the Michell-Hemp Optimality Criterion:

$$
-\frac{1}{\sigma_i^-} \leq \varepsilon_i \leq \frac{1}{\sigma_i^+}
$$

4. Add members

 \Rightarrow obtain a revised sub-problem

5. Repeat from 2.

Example: Hemp cantilever

Progress of adaptive solution

Proof of Optimality

• *If, after an iteration, there are no potential members which violate the Michell-Hemp optimality criterion, by definition the current optimal solution must also be the optimal solution for the fully connected ground structure.*

Extension: roof loading

Extension: roof loading

- Issue over where loads applied
- But problems validating 'transmissible' load model…
- Led to interesting academic diversion, with surprising outcome…
- …overturned centuries old belief that parabolic form most optimal to carry a uniform load (Darwich, Gilbert & Tyas, SMO 2010; Tyas, Pichugin & Gilbert, Proc. R. Soc. A. 2011)

Numerical results, $\sigma = 100\sigma^+$:

* Extrapolated volume (see Appendix for details)

Numerical results, $\sigma = \sigma^+$:

Part of $\sigma = 100\sigma^+$ structure from (a) shown for comparison

Nodal $divs, n_r$	Volume	%diff	Nodal $divs, n_x$	Volume	$\%$ diff
2	0.666666	15.47%	320	0.575512	$-0.3184%$
20	0.583459	1.058%	340	0.575499	$-0.3206%$
40	0.578446	0.1898%	360	0.575486	$-0.3229%$
60	0.577022	$-0.0569%$	380	0.575476	$-0.3246%$
80	0.576462	$-0.1539%$	400	0.575466	$-0.3264%$
100	0.576200	$-0.1992%$	420	0.575457	$-0.3279%$
120	0.576006	$-0.2328%$	440	0.575451	$-0.3290%$
140	0.575867	$-0.2569%$	460	0.575445	$-0.3300%$
160	0.575782	$-0.2716%$	480	0.575438	$-0.3312%$
180	0.575724	$-0.2817%$	500	0.575434	$-0.3319%$
200	0.575672	-0.2907%	600	0.575414	$-0.3354%$
220	0.575632	$-0.2976%$	700	0.575397	$-0.3383%$
240	0.575600	$-0.3032%$	800	0.575387	$-0.3400%$
260	0.575571	$-0.3082%$	900	0.575379	$-0.3414%$
280	0.575547	$-0.3123%$	1000	0.575373	0.342504
300	0.575526	$-0.3160%$	∞^*	0.575338	$-0.3485%$

* Extrapolated volume (see Appendix for details)

Analytical solution (0.34**9**5% lighter than parabolic arch)

(Tyas, Pichugin & Gilbert, Proc. R. Soc. A. 2011)

Possibilities: retrofit design

• Example - strengthen arch to carry large load:

Possibilities: additive manufacture

Example II: collapse analysis of continua

Existing tools for collapse analysis

'Traditional': based on hand analysis solutions etc.

(potentially embedded in simple programs / spreadsheets etc.)

More:

- complex
- time consuming
- input parameters
- expertise required
- accurate [potentially at least!]

'Mainstream': based on computational limit analysis?

'Advanced': based on nonlinear finite elements etc.

Limit analysis + finite elements

- Involves only strength parameters
- Powerful and flexible, but:
	- needs tailored meshes or high order elements accurate results OR adaptive refinement
	- output arguably lacks clarity of classical 'hand' based limit analysis:

• over 40 years since first paper in this field (Belytschko & Hodge, J. Appl. Mech. ASME, 1967), but still not widely used in industry…

Alternative I: fully continuous

- Meshless methods have recently been explored:
	- Similar to finite element limit analysis but can overcome mesh problems
	- But somewhat complex and strict bounds not available (e.g. EFG plates: Le, Gilbert & Askes. IJNME 2009, 2010)

Alternative II: fully discontinuous

• E.g. can we just automate traditional 'hand' type analysis tools for continuum problems?

Alternative II: fully discontinuous

• Rigid element based formulations have been tried:

• But solutions highly dependent on element topology…

But lets rewind to Michell's seminal 1904 work…

- Slip lines in plane Tresca bodies & optimal 'Michell' trusses both comprise 'Hencky-Prandtl' nets
	- Orthogonal curvilinear coordinate systems
	- Analogy discovered by Hemp, Prager in 1950s (& me in 2000s!)
- \Rightarrow Should be possible to use layout optimisation for analysis problems…

But lets rewind to Michell's seminal 1904 work…

- Slip lines in plane Tresca bodies & optimal 'Michell' trusses both comprise 'Hencky-Prandtl' nets
	- Orthogonal curvilinear coordinate systems
	- Analogy discovered by Hemp, Prager in 1950s (& me in 2000s!)
- \Rightarrow Should be possible to use layout optimisation for analysis problems…

The analogy:

- Developed fairly recently (Smith & Gilbert, Proc. R. Soc. A. 2007)
- Key = problem formulated in terms of lines of **discontinuity** (rather than rigid elements)
- The critical **layout** of these lines can be determined using **optimization** techniques

Discontinuity (slip-line)

How does DLO work: conceptual

How does DLO work: mathematics

Variables: displacements in **d** and plastic multipliers in **p**

Nodal compatibility

$$
\sum_{i=1}^{5} s_i \cos \theta_i = 0
$$

$$
\sum_{i=1}^{5} s_i \sin \theta_i = 0
$$

Implementation: MATLAB

• ≈150 line script for simple plane strain problems at:<http://cmd.shef.ac.uk/dlo>

Implementation: industry tool

- Required developments (cf. MATLAB):
	- Multiple domains of general (non-convex) shape
	- Visualization of failure mechanisms
	- Free-body diagrams
	- Water pressures, etc, etc...
- Status:
	- 'LimitState:GEO' launched in 2008 now widely used across the world
	- Freely available for academic use (see: <http://www.limitstate.com/geo>)

Simple DLO example

• For 'Prandtl punch' problem, solution within 1% of exact solution $(2+\pi)$ in approx. 1 second:

(>100 other benchmarks available at limitstate.com/geo/validation)

'Combined' Soil-structure interaction

Current work

Current work: DLO + rotations

- Already considered rotations occurring at boundaries (Gilbert et al. Proc. ICE EACM, 2010)
- Now modelling arbitrary rotations with curved slip-lines
- Results look good (Smith & Gilbert, Geotechnique, submitted) :

Current work: 3D DLO

- Using 'edge based' formulation and triangular slip-surfaces
- Can now obtain solutions using Second Order Cone Programming
- Computationally costly, though reasonable results often obtainable with coarse discretizations, e.g. 3D bearing capacity:

ешритсат

Elasto-plastic finite element

Current work: soil-structure interaction

- Approx. 40% of UK bridge spans are masonry
- Up to 90% of load carrying capacity due to presence of soil backfill
- Limit analysis can be used to model soil and structure, but some difficulties arise:

Current work: soil-structure interaction

• Digital imaging and Particle Image Velocimetry (PIV) has potential to give a step-change in understanding

(large EPSRC/Network Rail project now underway) • Aiming to use optimization to automatically correlate model and test data

Conclusions

Conclusions

- Layout optimization is a powerful tool, for use in analysis and design
- Discontinuity layout optimization (DLO) is a powerful new computational limit analysis procedure
	- Typically involves solution of a linear optimization problem, which is easy to solve
	- Singularities are identified automatically
	- Now widely used in industry, and has the potential to form the basis of future mainstream collapse analysis tools
- DLO has been implemented in a short MATLAB script & also in the LimitState:GEO software - both freely available for academic use

Acknowledgements

- People:
	- Colin Smith, Andy Tyas, Wael Darwich, Iain Haslam, Tom Pritchard, Sam Hawksbee, Dong Nguyen, Aleksey Pichugin
- Organizations:
	- EPSRC (UK Government Research Council)

Thank you for listening!