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Rounding Precision Accuracy Higher Precision Tiny Errors
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Floating Point Number System

Floating point number system F ⊂ R:

y = ±m × βe−t , 0 ≤ m ≤ βt − 1.

Base β,
precision t ,
exponent range emin ≤ e ≤ emax.

Floating point numbers are not equally spaced.

If β = 2, t = 3, emin = −1, and emax = 3:

0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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Rounding

For x ∈ R, fl(x) is an element of F nearest to x , and the
transformation x → fl(x) is called rounding (to nearest).

Theorem
If x ∈ R lies in the range of F then

fl(x) = x(1 + δ), |δ| ≤ u :=
1
2
β1−t .

u is the unit roundoff, or machine precision.
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Types of Rounding

Round to nearest—with rule for breaking ties.
8.12→ 8.1, 8.17→ 8.2.
8.15→ 8.1 or 8.2.

Round up: to +∞.
8.11→ 8.2.
Round down: to −∞.
8.68→ 8.6.

Thomas (9) homework
Round 17.37 to the nearest tenth. “17.4”
Round 13.75 to the nearest tenth. “13.8”
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Justin Gatlin Record, 2006

“The American was given a time of 9.76sec at the
Qatar Super grand prix but his official time was 9.766,
which was rounded down instead of being rounded up
to Powell’s time of 9.77 set in Athens last year
according to rules set out by track and field’s governing
body, the timekeeper Tissot admitted.”
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Bank of England: Inflation Rate, 2007
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Vancouver Stock Exchange Index

January 1982: Index established at 1000.
November 1983: Index was 520.

But exchange seemed to be doing well.

Explanation:

Index rounded down to three digits at each
recomputation.
Errors always in same direction⇒ thousands of small
errors add up to a large error.

Upon correct recalculation, the index doubled!
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Virgin Media, 2007

Remember
Rounding doesn’t always mean round to nearest!
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Precision versus Accuracy

Unit roundoff u = 1
2β

1−t .

fl(abc) = ab(1 + δ1) · c(1 + δ2) |δi | ≤ u,
= abc(1 + δ1)(1 + δ2)

≈ abc(1 + δ1 + δ2).

Precision = u.
Accuracy ≈ 2u.

Accuracy is not limited by precision
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Walkers’ Trouser Review

• pARAMO Torres Trousers £105 
Waterproof, insulated trousers to be worn as 

an outer layer or next to the skin: I understand the 
concept, but the execution is unusual. The waist is 

• wide relative to thighs, and the cut is narrow around 
backside and crotch (despi te a gusset). There is only 

it. The wa ist connects like a nappy: 
adjust the stati c, integral webbing 
belt via a large quick-release buckle 
(which can clash with a rucksack 
or camera bag 
hipbelt), then 

fold a fabric 
fla p up to the 
belt and secure 
with two 
Ve lcro tabs. 
This leaves 
an air gap on 
each side, 
between 

waist and the top of the leg zip. Knees articulate but 
when the leg is raised above step height, the fabric is 
restrictive across the thigh and backside. Full length 
side zips (legs cannot be easily shortened) allow rapid 
zipping on or off - useful if they are worn as a super
warm overtrouser. Paramo say Torres 'represent 
a practical su rviva l aid ', but as a next-to-skin trouser 
they fee l compromised by the cut, and an insulated 
overt rouser has a limited market. 

THE LOWDOWN 

Fabric Nikwax Analogy Insulator 
(polyester microfibre outer, 100g 
polyester fill) 
Sizes XS-XL (unisex) 
Inside leg 79cm only 
Waist integral belt, front flap with 
Velcro tabs 

IH't'Irnl Paramo, 01892 786444, 
www.paramo_co.uk 

Cit THE NORTH FACE Insulated Trekker Pant 
Heading to the Antarctic? Pack a pair of 

these. Inside the stretch nylon exterior is a quilted 
taffeta lining ... it's li ke being wrapped in a duvet. The 
on ly hitch is that, outside co ld, dry cond it ions, they're 
often too warm. There are no leg vents and no water 
repellency, although the insulation stops moisture 
(mist, not rain) seeping through. Breathability 
is good for such a warm garment and they are 
super-comfortable in chilly weather. A choice of 
leg lengths is available and the plain hem is easily 
adjusted. The waist is generous, with belt loops and 
a static drawcord to keep them in place although 
the drawcord isn't very effective against the 
weight and bulk of the trousers. Pockets are odd: 
the zipped side pockets are on ly just big enough 
for my (small) hands and I'm sti ll searching 
for a use for the zipped pocket behind the left 
thigh. I found these pants too warm for British 
hill walking, but appreciated them in cold, dry 
weather in the French Alps. 

THE LOWDOWN 
Fabric 90% nylon, 10% elastane; polyester insulation 
Sizes Men: 30"-38". Women: 8-16 

IH't'ImU The North Face, 
01539822155, 
www.thenorthface.com/eu 

Inside leg Men: Regular 80-83cm, Long 85-88cm. Women: 
Short 71-75cm, Regular 76-80cm, Long 81-85cm_ All size 
graduated. 
Waist zip, 2 press studs, belt loops, static drawcord 
Pockets 2 zipped front, 1 zipped rear, 1 zipped back thigh 

£65 

January 2011 Outdoor Photography 75 
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RGB to XYZ

From CIE Standard (1931):X
Y
Z

 =

 0.49 0.31 0.20
0.17697 0.81240 0.01063

0 0.01 0.99

R
G
B

 .

But in many books:X
Y
Z

 =

0.49000 0.31000 0.20000
0.17697 0.81240 0.01063

0 0.01000 0.99000

R
G
B

 .
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Rational Function

r(x) =
(((7x − 101)x + 540)x − 1204)x + 958

(((x − 14)x + 72)x − 151)x + 112

0 0.5 1 1.5 2 2.5 3 3.5 4
3

4

5

6

7

8

9

10

11

12
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Continued Fraction

r(x) = 7− 3

x − 2−
1

x − 7 +
10

x − 2−
2

x − 3

Division by zero at
x = 1,2,3,4, but r eval-
uates correctly in IEEE
arithmetic!

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−16

10
−15

10
−14

10
−13

Rational form

Continued fraction
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Cancellation Example

0 ≤ 1− cos x
x2 < 1/2, x 6= 0.

With x = 1.2× 10−5, cos x rounded to 10 sig figs is

c = 0.9999 9999 99 ⇒ 1− c = 0.0000 0000 01.

Then (1− c)/x2 = 10−10/1.44× 10−10 = 0.6944 . . .!

To avoid cancellation, rewrite as

1
2

(
sin(x/2)

x/2

)2

.

The subtraction 1− c is exact.
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Cancellation

Theorem (Sterbenz)
Let x and y be floating point numbers with y/2 ≤ x ≤ 2y.
Then x − y is computed exactly (assuming x − y does not
underflow).

Cancellation brings earlier errors into prominence but is
not always a bad thing.

Numbers being subtracted may be error free.
Cancellation may be a symptom of intrinsic ill
conditioning of problem.
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Midpoint of Arc

Guo, H & Tisseur (2009):

b

−b a

−a

c

Problem: Find midpoint c
of an arc (a,b).

Obvious formula c = (a +
b)/|a + b| is unstable
when a ≈ −b.

Solution: If a = eiθ1, b =
eiθ2 then c = ei(θ1+θ2)/2.
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How to Compute logλ2 − logλ1

Define the unwinding number

U(z) := z − log ez

2πi
=

⌈
Im z − π

2π

⌉
∈ Z.

Let z = (λ2 − λ1)/(λ2 + λ1).

Then

logλ2 − logλ1 = log
(
λ2

λ1

)
+ 2π i U(logλ2 − logλ1)

= log
(

1 + z
1− z

)
+ 2π i U(logλ2 − logλ1)

= atanh(z) + 2π i U(logλ2 − logλ1).

H (2008): used in MATLAB logm.
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IEEE Standard 754-2008 and 1985

Type Size Range u = 2−t

single 32 bits 10±38 2−24 ≈ 6.0× 10−8

double 64 bits 10±308 2−53 ≈ 1.1× 10−16

quadruple 128 bits 10±4932 2−113 ≈ 9.6× 10−35

Arithmetic ops (+,−, ∗, /,√) performed as if first
calculated to infinite precision, then rounded.
Default: round to nearest, round to even in case of tie.
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Need for Higher Precision

Bailey, Simon, Barton & Fouts, Floating Point
Arithmetic in Future Supercomputers, Internat. J.
Supercomputer Appl. 3, 86–90, 1989.
Bailey, Barrio & Borwein, High-Precision
Computation: Mathematical Physics and Dynamics,
Appl. Math. Comput. 218, 10106–10121, 2012.

Long-time simulations.
Large-scale simulations.
Resolving small-scale phenomena.
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Increasing the Precision

y = eπ
√

163 evaluated at t digit precision:

t y
20 262537412640768744.00
25 262537412640768744.0000000
30 262537412640768743.999999999999

Is the last digit before the decimal point 4?

t y
35 262537412640768743.99999999999925007
40 262537412640768743.9999999999992500725972

So no, it’s 3!
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Going to Higher Precision

If we have quadruple or higher precision, what do we need
to do to modify existing algorithms?

To what extent are existing algs precision-independent?
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Matrix Functions

(Inverse) scaling and squaring-type algorithms for eA,
log(A), cos(A), At use Padé approximants.

Padé degree chosen to achieve accuracy u.
Padé coeffs and algorithm parameters need rederiving
for a different u. Logic may change!
MATLAB’s expm, logm need changing for smaller u.

Methods based on best L∞ approximations to eA for
Hermitian A also need higher order approximations
deriving.

Scalar elementary functions!

University of Manchester Nick Higham Accuracy and Stability 30 / 44
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Tiny Relative Errors

Normwise relative errors

‖x − y‖∞
‖x‖∞

=
maxi |xi − yi |

maxi |xi |

from a numerical experiment:

1.32e-22 3.39e-22 3.39e-21 8.67e-20
1.39e-18 4.36e-18 5.30e-18 5.83e-18
1.45e-17 3.76e-17 3.76e-17 4.27e-17
...

How can errors be� u ≈ 10−16?
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Base β = 2, u = 2−t . Dingle & H (2011):

Theorem

If x 6= 0 and y are distinct normalized flpt numbers then
|x − y |/|x | ≥ u and this lower bound is attainable.

But
‖x − y‖∞
‖x‖∞

� u is possible.

x =

[
1

10−22

]
, y =

[
1

2× 10−22

]
,
‖x − y‖∞
‖x‖∞

= 10−22.
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Relative Errors
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Performance Profiles

Dolan & Moré (2002).

For the given set of solvers and test problems, plot

x-axis: α
y -axis: probability that solver has error within factor α

of smallest error over all solvers on the test set.
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Performance Profile
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The Effect of Tiny Errors

Problem Algorithm 1 Algorithm 2
1 4e-14 1e-16
2 6e-16 4e-16
3 1e-16 3e-16
4 9e-23 1e-17
5 6e-20 5e-17

Which algorithm is better?
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Profile
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Algorithm 1

Algorithm 2

Alg 1 Alg 2
4e-14 1e-16
6e-16 4e-16
1e-16 3e-16
9e-23 1e-17
6e-20 5e-17
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Transform the Data

Map 0 to a (parameter). Typically, a = u/20.
Map [0,u] to [a,u] linearly.
Leave values ≥ u alone.

Imposes positive minimum.
Preserves ordering of errors.
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After
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Matrix Exponential (Al-Mohy & H, 2011)

20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

α

p

 

 

Algorithm 1

Algorithm 2

University of Manchester Nick Higham Accuracy and Stability 42 / 44



Rounding Precision Accuracy Higher Precision Tiny Errors

Matrix Exponential Transformed
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Accuracy and Stability 
of Numerical Algorithms

SECOND EDITION

Right residual

Left residual

Unit roundoff

Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior
of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, pertur-
bation theory, and rounding error analysis, all enlivened by historical perspective and informative
quotations.

This second edition expands and updates the coverage of the first edition (1996) and includes
numerous improvements to the original material.Two new chapters treat symmetric indefinite
systems and skew-symmetric systems, and nonlinear systems and Newton’s method. An expanded
treatment of Gaussian elimination incorporates rook pivoting and additional error bounds. Other
new topics include rank-revealing LU factorizations, weighted and constrained least squares
problems, and the fused multiply-add operation found on some modern computer architectures.

Although not designed specifically as a textbook, this new edition is a suitable reference for an
advanced course. It can also be used by instructors at all levels as a supplementary text from
which to draw examples, historical perspective, statements of results, and exercises.

From reviews of the first edition:

“This definitive source on the accuracy and stability of numerical algorithms is quite a bargain and a
worthwhile addition to the library of any statistician heavily involved in computing.”

— Robert L. Strawderman, Journal of the American Statistical Association, March 1999.

“This text may become the new ‘Bible’ about accuracy and stability for the solution of systems of linear
equations. It covers 688 pages carefully collected, investigated, and written ...One will find that this book is
a very suitable and comprehensive reference for research in numerical linear algebra, software usage and
development, and for numerical linear algebra courses.”

— N. Köckler, Zentralblatt für Mathematik, Band 847/96.

“Nick Higham has assembled an enormous amount of important and useful material in a coherent,
readable form. His book belongs on the shelf of anyone who has more than a casual interest in rounding

error and matrix computations.”
— G.W. Stewart, SIAM Review, March 1997.
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