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Chapter 1

Introduction

In the technical report by Gillard and Iles [9], several method of moments based es-

timators for the errors in variables model were introduced and discussed. Broadly

speaking, the method of moments estimators can be divided into two separate classi-

fications. These are:

• Restricted parameter space estimators

• Higher moment based estimators

Restricted parameter space estimators These estimators are based on first and

second order moments, and are derived by assuming that a parameter (or a function

of parameters) is known a priori.

Higher moment based estimators If the data displays sufficient skewness and

kurtosis, one may estimate the parameters of the model by appealing to estimators

based on third and fourth order moments. Although these estimators have the initial

appeal of avoiding a restriction on the parameter space, they must be used with caution.

Details of how these estimators were derived, and how they may be used in practise

were again given by Gillard and Iles [9]. This present technical report aims to provide

the practitioner with further details concerning asymptotic variance and covariances

for both the restricted cases, and higher moment based estimators. In this way, this

report can be viewed as a direct sequel to the technical report by Gillard and Iles [9].
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Chapter 2

The Simple Linear Errors in
Variables Model

Consider two variables, ξ and η which are linearly related in the form

ηi = α + βξi, i = 1, . . . , n

However, instead of observing ξ and η, we observe

xi = ξi + δi

yi = ηi + εi = α + βξi + εi

where δ and ε are considered to be random error components, or noise.

It is assumed that E[δi] = E[εi] = 0 and that V ar[δi] = σ2
δ , V ar[εi] = σ2

ε for all i. Also

the errors δ and ε are mutually uncorrelated. Thus

Cov[δi, δj] = Cov[εi, εj] = 0, i 6= j

Cov[δi, εj] = 0,∀ i, j (2.1)

There have been several reviews of errors in variables methods, notably Casella and

Berger [2], Cheng and Van Ness [3], Fuller [7], Kendall and Stuart [14] and Sprent [15].

Unfortunately the notation has not been standardised. This report closely follows the

notation set out by Cheng and Van Ness [3] but for convenience, it has been necessary

to modify parts of their notation.
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Errors in variables modelling can be split into two general classifications defined by

Kendall [12], [13], as the functional and structural models. The fundamental difference

between these models lies in the treatment of the ξ′is

The functional model This assumes the ξ′is to be unknown, but fixed constants µi.

The structural model This model assumes the ξ′is to be a random sample from a

random variable with mean µ and variance σ2.

It is the linear structural model that is the main focus of this technical report.

2.1 The Method of Moments Estimating Equations

The method of moments estimating equations follow from equating population mo-

ments to their sample equivalents. By using the properties of ξ, δ and ε detailed

above, the population moments can be written in terms of parameters of the model.

This was also done by Kendall and Stuart [14], amongst others.

E[X] = E[ξ] = µ

E[Y ] = E[η] = α + βµ

V ar[X] = V ar[ξ] + V ar[δ] = σ2 + σ2
δ

V ar[Y ] = V ar[α + βξ] + V ar[ε] = β2σ2 + σ2
ε

Cov[X,Y ] = Cov[ξ, α + βξ] = βσ2

The method of moments estimating equations can now be found by replacing the
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population moments with their sample equivalents

x̄ = µ̃ (2.2)

ȳ = α̃ + β̃µ̃ (2.3)

sxx = σ̃2 + σ̃2
δ (2.4)

syy = β̃2σ̃2 + σ̃2
ε (2.5)

sxy = β̃σ̃2 (2.6)

Here, a tilde is placed over the symbol for a parameter to denote the method of moments

estimator. From equations (2.4), (2.5) and (2.6) it can be seen that there is a hyperbolic

relationship between the method of moments estimators. This was called the Frisch

hyperbola by van Montfort [16].

(sxx − σ̃2
δ )(syy − σ̃2

ε) = (sxy)
2

This is a useful equation as it relates pairs of estimates (σ̃2
δ , σ̃

2
ε) to the data in question.

One of the main problems with fitting an errors in variables model is that of iden-

tifiability. It can be seen from equations (2.2), (2.3), (2.4), (2.5) and (2.6) a unique

solution cannot be found for the parameters; there are five equations, but six unknown

parameters. A way to proceed with this method is to assume that there is some prior

knowledge of the parameters that enables a restriction to be imposed. The method

of moments equations under this restriction can then be readily solved. Other than

this, additional estimating equations may be derived by deriving equations based on

the higher moments.

There is a comparison with this identifiability problem and the maximum likelihood

approach. The only tractable assumption to obtain a maximum likelihood solution is

to assume that the distributions of ξ, δ and ε are all Normal. Otherwise, the algebraic

manipulation required becomes an enormous task. Further details will be presented

in Gillard [8]. If all the distributions are assumed Normal, this leads to the bivari-

ate random variable (x, y) having a bivariate Normal distribution. This distribution
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has five parameters, and the maximum likelihood estimators for these parameters are

identical to the method of moments estimators based on the moment equations (2.2),

(2.3), (2.4), (2.5), and (2.6) above. In this case therefore it is not possible to find

unique solutions to the likelihood equations without making an additional assumption,

effectively restricting the parameter space. A fuller treatment of restrictions on the

parameter space and method of moments estimators can be found in Gillard and Iles

[9].

2.2 Estimation of the Linear Structural Model

It is possible to write estimators for the parameters of the linear structural model in

terms of β and first or second order moments. Once an estimator for β has been ob-

tained, the following equations can be used to estimate the remaining parameters.

Equation (2.2) immediately yields the intuitive estimator for µ

µ̃ = x̄ (2.7)

The estimators for the remaining parameters can be expressed as functions of the

slope, β, and other sample moments. An estimator for the intercept may be found by

substituting (2.2) into (2.3) and rearranging to give

α̃ = ȳ − β̃x̄ (2.8)

This shows, just as in simple linear regression, that the errors in variables regression

line also passes through the centroid (x̄, ȳ) of the data.

Equation (2.6) gives

σ̃2 =
sxy

β̃
(2.9)

with β̃ and sxy sharing the same sign.

If the error variance σ2
δ is unknown, it may be estimated using (2.4)

σ̃2
δ = sxx − σ̃2 (2.10)
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Finally, if the error variance σ2
ε is unknown, it may be estimated using (2.5)

σ̃2
ε = syy − β̃2σ̃2 (2.11)

In order to ensure that the estimators for the variances are non negative, admissibil-

ity conditions must be placed on the equations. The straightforward conditions are

included below

sxx > σ2
δ

syy > σ2
ε .

More precisely, the estimate of the slope must lie between the slopes of the regression

line of y on x and that of x on y for variance estimators using (2.4), (2.5) and (2.6) to

be non negative.

As stated in Gillard and Iles [9], there is a variety of estimators for the slope. This

technical paper will concentrate on the asymptotic theory regarding some of these

estimators. The estimators whose variances are derived here will be stated later, but

for more detail concerning practical advice and also the derivation of the estimators,

the reader is once again referred to Gillard and Iles [9].
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Chapter 3

Asymptotics for the Method of
Moments

A common misunderstanding regarding the method of moments is that there is a lack

of asymptotic theory associated with the method. This however is not true. Cramer

[4] and subsequently other authors such as Bowman and Shenton [1] detailed an ap-

proximate method commonly known as the delta method (or the method of statistical

differentials) to obtain expressions for variances and covariances of functions of sample

moments. The method is sometimes described in statistics texts, for example DeGroot

[5], and is often used in linear models to derive a variance stabilisation transformation

(see Draper and Smith [6]). The delta method is used to approximate the expecta-

tions, and hence also the variances and covariances of functions of random variables by

making use of a Taylor series expansion about the expected values. The motivation of

the delta method is included below.

Consider a first order Taylor expansion of a function of a sample moment x, f(x) where

E[x] = µ.

f(x) ' f(µ) + (x− µ)f ′(µ) (3.1)

Upon taking the expectation of both sides of (3.1) the usual approximation

E[f(x)] ' f(µ)
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is found. Additionally,

V ar [f(x)] = E
[{f(x)− E[f(x)]}2

] ' {f ′(µx)}2E[(x− µx)2]

= {f ′(µx)}2 V ar[x]

=
{∂f
∂x

}2

V ar[x]

The notation {∂f
∂x

}
=
∂f

∂x

∣∣∣∣
x=E[x]

was introduced by Cramer to denote a partial derivative evaluated at the expected

values of the sample moments.

This can be naturally extended to functions of more than one sample moment. For a

function f(x, y)

V ar[f(x, y)] '
{∂f
∂x

}2

V ar[x] +
{∂f
∂y

}2

V ar[y] + 2
{∂f
∂x

}{∂f
∂y

}
Cov[x, y]

and for a function of p sample moments, x1, . . . , xp,

V ar[f(x1, . . . , xp)] ' ∇TV∇

where

∇T =

(
∂f

∂x1

, . . .
∂f

∂xp

)

is the vector of derivatives with each sample moment substituted for its expected value,

and

V =




V ar[x1] Cov[x1, x2] . . . Cov[x1, xp]

...
. . .

...

Cov[x1, xp] Cov[x2, xp] . . . V ar[xp]




is the p×pmatrix containing the variances of and covariances between sample moments.

Covariances between functions of sample moments can be derived in a similar manner.
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Chapter 4

Deriving the Variance Covariance
Matrices for Restricted Cases

Essentially, use of the method outlined above requires the prior computation of the

variance of each relevant sample moment, and the covariances between each sample

moment. For each of the restricted cases discussed by Gillard and Iles [9], the fol-

lowing variances and covariances are used. The variances and covariances needed to

compute the asymptotics for the higher moment based estimators will be stated later

on in this report.

The variances of the first and second order moments are:

V ar[x̄] ' σ2 + σ2
δ

n
(4.1)

V ar[ȳ] ' β2σ2 + σ2
ε

n
(4.2)

V ar[sxx] ' (µξ4 − σ4) + (µδ4 − σ4
δ ) + 4σ2σ2

δ

n
(4.3)

V ar[sxy] ' β2(µξ4 − σ4) + σ2σ2
ε + β2σ2σ2

δ + σ2
δσ

2
ε

n

V ar[syy] ' β4(µξ4 − σ4) + (µε4 − σ4
ε) + 4β2σ2σ2

ε

n
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The covariances between all first and second order moments are:

Cov[x̄, ȳ] ' βσ2

n
(4.4)

Cov[x̄, sxx] ' µξ3 + µδ3
n

Cov[ȳ, sxx] ' βµξ3
n

Cov[x̄, sxy] ' βµξ3
n

Cov[ȳ, sxy] ' β2µξ3
n

Cov[x̄, syy] ' β2µξ3
n

Cov[ȳ, syy] ' β3µξ3 + µε3
n

Cov[sxx, sxy] ' β(µξ4 − σ4) + 2βσ2σ2
δ

n
(4.5)

Cov[sxx, syy] ' β2(µξ4 − σ4)

n

Cov[sxy, syy] ' β3(µξ4 − σ4)− 2βσ2σ2
ε

n

Expressions (4.1), (4.2) and (4.4) follow from the definition of the linear structural

model. To show how these may be derived, the algebra underlying expressions (4.3)

and (4.5) shall be outlined. For brevity the notation ξ∗i = ξi − ξ̄ and η∗i = ηi − η̄ is

introduced.

4.1 Derivation of V ar[sxx]

Since ξi and δi are uncorrelated we can write

E[sxx] = E

[
1

n

n∑
i=1

(xi − x̄)2

]
= E

[
1

n

n∑
i=1

{(ξ∗i ) + (δ∗i )}2

]

=
1

n
E

[ n∑
i=1

(ξ∗i )
2 + 2

n∑
i=1

(ξ∗i )(δ
∗
i ) +

n∑
i=1

(δ∗i )
2

]

' σ2 + σ2
δ .

The above result also follows from the method of moment estimating equation stated

earlier, sxx = σ2 + σ2
δ .
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E[(sxx)
2] =

1

n2
E

[{ n∑
i=1

(xi − x̄)2

}2 ]

=
1

n2
E

[{ n∑
i=1

(
(ξ∗i ) + (δ∗i )

)2
}2 ]

=
1

n2
E

[ n∑
i=1

(
(ξ∗i )

4 + 4(ξ∗i )
3(δ∗i ) + 6(ξ∗i )

2(δ∗i )
2 + 4(ξ∗i )(δ

∗
i )

3 + (δ∗i )
4

)]

+
1

n2
E

[∑∑

i6=j

(
(ξ∗i )

2(ξ∗j )
2 + 2(ξ∗i )

2(ξ∗j )(δ
∗
j ) + (ξ∗i )

2(δ∗j )
2 + 2(ξ∗i )(ξ

∗
j )

2(δ∗i )

+ 4(ξ∗i )(ξ
∗
j )(δ

∗
i )(δ

∗
j ) + 2(ξ∗i )(δ

∗
i )

2(δ∗j ) + (ξ∗j )
2(δ∗i )

2 + 2(ξ∗j )(δ
∗
i )(δ

∗
j )

2 + (δ∗i )
2(δ∗j )

2

)]

' 1

n2

(
n(µξ4 + 6σ2σ2

δ + µδ4) + n(n− 1)(σ4 + 2σ2σ2
δ + σ4

δ )

)

Hence it follows that

V ar[sxx] = E[(sxx)
2]− E2[sxx]

' (µξ4 − σ4) + (µδ4 − σ4
δ ) + 4σ2σ2

δ

n

4.2 Derivation of Cov[sxx, sxy]

E[sxxsxy] =
1

n2
E

[ n∑
i=1

(xi − x̄)2 ×
n∑
i=1

(xi − x̄)(yi − ȳ)

]

Now, (xi − x̄) = (ξ∗i ) + (δ∗i ) and (yi − ȳ) = β(ξ∗i ) + (ε∗i ). Substituting these into the
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above summation, and multiplying out leads to

E[sxxsxy] =
1

n2
E

[ n∑
i=1

(
β(ξ∗i )

4 + 2β(ξ∗i )
3(δ∗i ) + β(ξ∗i )

2(δ∗i )
2 + β(ξ∗i )

3(δ∗i ) + 2β(ξ∗i )
2(δ∗i )

2

+β(ξ∗i )(δ
∗
i )

3 + (ξ∗i )
3(ε∗i ) + 2(ξ∗i )

2(δ∗i )(ε
∗
i ) + (ξ∗i )(δ

∗
i )

2(ε∗i ) + (ξ∗i )
2(δ∗i )(ε

∗
i )

+2(ξ∗i )(δ
∗
i )

2(ε∗i ) + (δ∗i )
3(ε∗i )

)]

+
1

n2
E

[∑∑

i6=j

(
β(ξ∗i )

2(ξ∗j )
2 + 2β(ξ∗i )

2(ξ∗j )(δ
∗
j ) + β(ξ∗i )

2(δ∗j )
2 + β(ξ∗i )(ξ

∗
j )

2(δ∗i )

+2β(ξ∗i )(ξ
∗
j )(δ

∗
i )(δ

∗
j ) + β(ξ∗i )(δ

∗
i )(δ

∗
j )

2 + (ξ∗i )(ξ
∗
j )

2(ε∗i ) + 2(ξ∗i )(ξ
∗
j )(δ

∗
j )(ε

∗
i )

+(ξ∗i )(δ
∗
j )

2(ε∗i ) + (ξ∗j )
2(δ∗j )(ε

∗
j) + 2(ξ∗j )(δ

∗
i )(δ

∗
j )(ε

∗
i ) + (δ∗i )(δ

∗
j )

2(ε∗i )
)]

' 1

n2

(
n(βµξ4 + βσ2σ2

δ + 2βσ2σ2
δ ) + n(n− 1)(βσ4 + βσ2σ2

δ )

)

Hence,

Cov[sxx, sxy] = E[sxxsxy]− E[sxx]E[sxy]

' β(µξ4 − σ4) + 2βσ2σ2
δ

n
.
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Chapter 5

Constructing the Variance
Covariance Matrices

For each restricted case, and for the estimators of the slope based on the higher mo-

ments a variance-covariance matrix can be constructed. As there are six parameters

in the linear structural model µ, α, β, σ2, σ2
δ and σ2

ε the maximum size of the variance

covariance matrix is 6 × 6. If the parameter space is restricted, then the size of the

variance covariance matrix will decrease in accordance with the number of assumed

parameters.

It is possible to use the delta method in order to construct ‘shortcut’ formulae or ap-

proximations to enable quicker calculation of each element of the variance covariance

matrix. Usually, these shortcut formulae depend on the variability of the slope esti-

mator and the covariance of the slope estimator with a first or second order sample

moment. In some cases the variances and covariances do not depend on the slope esti-

mator used, and as a result are robust to the choice of slope estimator. These shortcut

formulae are stated below, and repeating the style of the previous section, example

derivations will be given. For brevity, the notation |Σ| = σ2
δσ

2
ε + β2σ2σ2

δ + σ2σ2
ε is

introduced. This is the determinant of the variance covariance matrix of the bivariate

distribution of x and y.
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5.1 Shortcut Formulae for Variances

Firstly, the shortcut formulae for the variances will be considered. V ar[α̃] will be the

example derivation provided.

V ar[µ̃] =
σ2 + σ2

δ

n

V ar[α̃] = µ2V ar[β̃] +
β2σ2

δ + σ2
ε

n
+ 2µ(βCov[x̄, β̃]− Cov[ȳ, β̃])

V ar[σ̃2] =
σ4

β2
V ar[β̃] +

|Σ|+ β2(µξ4 − σ4)

β2n
− 2σ2

β2
Cov[sxy, β̃]

V ar[σ̃2
δ ] =

σ4

β2
V ar[β̃] +

|Σ|+ β2(µδ4 − σ4
δ )

β2n
+

2σ2

β

(
Cov[sxx, β̃]− Cov[sxy, β̃]

β

)

V ar[σ̃2
ε ] = β2σ4V ar[β̃] + 2βσ2(βCov[sxy, β̃]− Cov[syy, β̃]) +

β2|Σ|+ (µε4 − σ4
ε)

n

Derivation of V ar[α̃]

V ar[α̃] = V ar[ȳ − βx̄] =
{∂α̃
∂ȳ

}2

V ar[ȳ]+
{∂α̃
∂β̃

}2

V ar[β̃]+
{∂α̃
∂x̄

}2

V ar[x̄]

+ 2
{∂α̃
∂ȳ

}{∂α̃
∂β̃

}
Cov[ȳ, β̃] + 2

{∂α̃
∂x̄

}{∂α̃
∂β̃

}
Cov[x̄, β̃]

+ 2
{∂α̃
∂x̄

}{∂α̃
∂ȳ

}
Cov[x̄, ȳ]

= µ2V ar[β̃] +
β2σ2

δ + σ2
ε

n
+ 2µ(βCov[x̄, β̃]− Cov[ȳ, β̃])

A similar shortcut formula was provided in the paper by Hood et al [11]. As out-

lined in Gillard [8], they assumed that (ξ, δ, ε) follow a trivariate Normal distribution.

They then used the theory of maximum likelihood to obtain the information matri-

ces required for the asymptotic variance covariance matrices for the parameters of the

model. Applying various algebraic manipulations to V ar[α̃] they showed that

V ar[α̃] = µ2V ar[β̃] +
β2σ2

δ + σ2
ε

n

The shortcut formula derived above is a generalisation of that derived by Hood et al.

[11] to cope with non-Normal ξ. Indeed, if (ξ, δ, ε) do follow a trivariate Normal distrib-

ution, then as β̃ is a function only of second order moments (or higher), β̃ is statistically

independent of the first order sample moments. As a result Cov[x̄, β̃] = Cov[ȳ, β̃] = 0
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and the shortcut formula derived above collapses to that suggested by Hood et al. [11]

5.2 Shortcut Formulae for Covariances

Now, the shortcut formulae for the covariances of µ̃ with the remaining parameters will

be provided.

Cov[µ̃, α̃] = −βσ
2
δ

n
− µCov[x̄, β̃]

Cov[µ̃, β̃] = Cov[x̄, β̃]

Cov[µ̃, σ̃2] =
µξ3
n
− σ2

β
Cov[x̄, β̃]

Cov[µ̃, σ̃2
δ ] =

µδ3
n

+
σ2

β
Cov[x̄, β̃]

Cov[µ̃, σ̃2
ε ] = −βσ2Cov[x̄, β̃]

The shortcut formulae for the covariances of α̃ with all other parameters are listed

here.

Cov[α̃, β̃] = Cov[ȳ, β̃]− βCov[x̄, β̃]− µV ar[β̃]

Cov[α̃, σ̃2] =
µσ2

β
V ar[β̃] + σ2

(
Cov[x̄, β̃]− Cov[ȳ, β̃]

β

)
− µ

β
Cov[sxy, β̃]

Cov[α̃, σ̃2
δ ] =

µ

β
Cov[sxy, β̃]− βµδ3

n
− µCov[sxx, β̃]− µσ2

β
V ar[β̃]

−σ2

(
Cov[x̄, β̃]− Cov[ȳ, β̃]

β

)

Cov[α̃, σ̃2
ε ] =

µε3
n

+ βµσ2V ar[β̃] + βσ2(βCov[x̄, β̃]− Cov[ȳ, β̃])

+µ(βCov[sxy, β̃]− Cov[syy, β̃])

The shortcut formulae for the covariances of β̃ with the remaining parameters are listed

here.

Cov[β̃, σ̃2] =
1

β
Cov[sxy, β̃]− σ2

β
V ar[β̃]

Cov[β̃, σ̃2
δ ] = Cov[sxx, β̃]− Cov[sxy, β̃]

β
+
σ2

β
V ar[β̃]

Cov[β̃, σ̃2
ε ] = Cov[syy, β̃]− βCov[sxy, β̃]− βσ2V ar[β̃]
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The shortcut formulae for the covariances of σ̃2 with the remaining parameters are

listed here.

Cov[σ̃2, σ̃2
δ ] = −σ

4

β2
V ar[β̃] +

σ2

β

(
2

β
Cov[sxy, β̃]− Cov[sxx, β̃]

)
+
|Σ| − 2σ2σ2

ε − 2σ2
δσ

2
ε

β2n

Cov[σ̃2, σ̃2
ε ] = σ4V ar[β̃]− σ2

β
Cov[syy, β̃] +

|Σ| − 2β2σ2σ2
δ − 2σ2

δσ
2
ε

n

Finally, the covariance between the error variance estimates is

Cov[σ̃2
δ , σ̃

2
ε ] = −σ4V ar[β̃] +

σ2

β
Cov[syy, β̃]− βσ2Cov[sxx, β̃] +

|Σ| − 2β2σ2σ2
δ − 2σ2σ2

ε

n
.

Again, an example derivation is provided.

Derivation of Cov[β̃, σ̃2] We have that

σ̃2 =
sxy

β̃
.

A first order Taylor expansion of σ̃2 around the expected values of sxy and β̃ is

σ̃2 = σ2 + (sxy − βσ2)
1

β
− (β̃ − β)

σ2

β
.

Hence,

Cov[β̃, σ̃2] = E[(β̃ − β)(σ̃2 − σ2)] =
1

β
Cov[sxy, β̃]− σ2

β
V ar[β̃].

5.3 Description of Variance Covariance Matrices for

Restricted Cases

The complete asymptotic variance covariance matrices for the different slope estima-

tors under varying assumptions are included in the following pages. For ease of use,

the matrices are expressed as the sum of three components, A,B and C. The matrix A

alone is needed if the assumptions are made that ξ, δ and ε all have zero third moments

and zero measures of kurtosis. These assumptions would be valid if all three of these

variables are normally distributed.

The matrix B gives the additional terms that are necessary if ξ has non zero third

moment and a non zero measure of kurtosis. It can be seen that in most cases the B

17



matrices are sparce, needing only adjustment for the terms for V ar[σ̃2] and Cov[µ̃, σ2].

The exceptions are the cases where the reliability ratio is assumed known, and slope

estimators involving the higher moments.

The C matrices are additional terms that are needed if the third moments and measures

of kurtosis are non zero for the error terms δ and ε. It is likely that these C matrices

will prove of less value to practitioners than the A and B matrices. It is quite possible

that a practitioner would not wish to assume that the distribution of the variable ξ

is Normal, or even that its third and fourth moments behave like those of a Normal

distribution. Indeed, the necessity for this assumption to be made in the likelihood

approach may well have been one of the obstacles against a more widespread use of

errors in variables methodology. The assumption of Normal like distributions for the

error terms, however, is more likely to be acceptable. Thus, in many applications, the

C matrix may be ignored.

As a check on the method employed the A matrices were checked with those given

by Hood [10] and Hood et al. [11], where a different likelihood approach was used in

deriving the asymptotic variance covariance matrices. In all cases exact agreement was

found, although some simplification of the algebra has been found to be possible. As

discussed earlier, the limitation of the likelihood approach is that it is limited to the

case where all random variables are assumed to be Normally distributed. The moments

approach described by Gillard and Iles [9] does not have this limitation.
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Chapter 6

The Variance Covariance Matrices

This section contains the variance covariance matrices for each of the restricted case

slope estimators outlined by Gillard and Iles [9]. These are

• Intercept α known

• Error variance σ2
δ known

• Error variance σ2
ε known

• Reliability ratio κ = σ2

σ2+σ2
δ

known

• Ratio of the error variances λ = σ2
ε

σ2
δ

known

• Both variances σ2
δ and σ2

ε known

For brevity, the notation U = σ2 + σ2
δ , V = β2σ2

δ + σ2
ε , e1 = µδ4 − 3σ4

δ , e2 = µε4 − 3σ4
ε

and e3 = βλµδ3 + µε3 shall be used.
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6.1 Intercept α known

The method of moments estimator for the slope based on this assumption is

β̃ =
ȳ − α
x̄

.

Since α is assumed to be known, the variance covariance matrix for µ̃, β̃, σ̃2, σ̃2
δ and σ̃2

ε

is required.

A1 =
1

n




U −βσ2
δ

µ

σ2σ2
δ

µ
−σ2σ2

δ

µ

β2σ2σ2
δ

µ

V
nµ2 − σ2

βµ2V
σ2

βµ2V −βσ2

µ2 V

|Σ|
β2 + σ4

β2µ2V + 2σ4 − |Σ|
β2 − σ4

β2µ2V − 2σ2σ2
δ −|Σ|+ σ4

µ2V + 2σ2σ2
ε

|Σ|
β2 + σ4

β2µ2V + 2σ4
δ |Σ| − σ4

µ2V − 2β2σ2σ2
δ

β2|Σ|+ β2σ4

µ2 V + 2σ4
ε




B1 =
1

n




0 0 µξ3 0 0

0 0 0 0

µξ4 − 3σ4 0
−2σ2β2µξ3

µ

0 0

0




C1 =
1

n




0 0 0 µδ3 0

0 0 −βµδ3 µε3
µ

0 σ2

µ
µδ3 − σ2

βµ
µε3

µδ4 − 3σ3
δ − 2σ

2

µ
µδ3

βσ2

µ
(βµδ3 + µ2µε3)

µε4 − 3σ3
ε − 2βσ

2

µ
µε3



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6.2 Error variance σ2
δ known

The method of moments estimator for the slope based on this assumption is

β̃ =
sxy

sxx − σ2
δ

.

Since σ2
δ is assumed known, the variance covariance matrix for µ̃, α̃, β̃, σ̃2 and σ̃2

ε is

required.

A2 =
1

n




U −βσ2
δ 0 0 0

µ2

σ4 (|Σ|+ 2β2σ4
δ ) + V − µ

σ4 (|Σ|+ 2β2σ4
δ )

2µβσ2
δ

σ2 U
2µβσ2

δ

σ2 V

1
σ4 (|Σ|+ 2β2σ4

δ ) −2βσ2
δ

σ2 U −2βσ2
δ

σ2 V

2U2 2β2σ4
δ

2V 2




B2 =
1

n




0 0 0 µξ3 0

0 0 0 0

0 0 0

µξ4 − 3σ4 0

0




C2 =
1

n




0 βµµδ3
σ2 −βµδ3

σ2 µδ3 β2µδ3

−2β2µµδ3
σ2

β2µδ3
σ2 −βµδ3 µε3 − β3µδ3

β2

σ4 e1 − β
σ2 e1 −β3

σ2 e1

e1 β2e1

e2 + β4e1



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6.3 Error variance σ2
ε known

The method of moments estimator for the slope based on this assumption is

β̃ =
syy − σ2

ε

sxy
.

Since σ2
ε is assumed known, the variance covariance matrix for µ̃, α̃, β̃, σ̃2 and σ̃2

δ is

required. For brevity, the notation W = (β2|Σ|+ 2σ2
ε) + V is introduced.

A3 =
1

n




U −βσ2
δ 0 0 0

µ2

β2σ4W − µ
β2σ4W

2µ
β3σ2 (σ2

εV + β4σ2σ2
δ ) −2µσ2

εV
β3σ2

1
β2σ4W − 2

β3σ2 (σ2
εV + β4σ2σ2

δ )
2σ2
εV

β3σ2

2
β4 (β4U2 + V 2 − 2β4σ4

δ ) − 2
β4 (σ2

εV + 2β2σ2
δσ

2
ε)

2V 2

β4




B3 =
1

n




0 0 0 µξ3 0

0 0 0 0

0 0 0

µξ4 − 3σ4 0

0




C3 =
1

n




0 0 0 0 µδ3

−2µµε3
βσ2

µε3
βσ2 −µε3

β2
µε3
β2 − βµδ3

1
β2σ4 e2 − 1

β3σ2 e2
1

β3σ2 e2

1
β4 e2 − 1

β4 e2

1
β4 (β4e1 + e2)



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6.4 Reliability ratio κ = σ2

σ2+σ2
δ

known

The method of moments estimator for the slope based on this assumption is

β̃ =
sxy
κsxx

.

The variance covariance matrix for µ̃, α̃, β̃, σ̃2 and σ̃2
δ is required. For brevity, the no-

tation $ = 1− κ is introduced.

A4 =
1

n




U −βσ2
δ 0 0 0

µ2 |Σ|
σ4 + V −µ |Σ|

σ4 0 2µβ (1−κ)
σ2 |Σ|

|Σ|
σ4 0 −2β (1−κ)

σ2 |Σ|
2σ4 −2β2κσ2σ2

δ

4β2(1− κ)|Σ|+ 2σ4
ε




B4 =
1

n




0 −µβ$
σ2 µξ3

β2$
σ2 µξ3 µξ3 −β2$µξ3

0 0 0 0

β2$2

σ4 (µξ4 − 3σ4) βκ$
σ2 (µξ4 − 3σ4) −β3$2

σ2 (µξ4 − 3σ4)

κ2(µξ4 − 3σ4) −β2κ$(µξ4 − 3σ4)

β4$2(µξ4 − 3σ4)




C4 =
1

n




0 µβκ
σ2µδ3 −βκ

σ2µδ3 κµδ3 β2κµδ3

−2µβ
2κ
σ2 µδ3

β2κ
σ2 µδ3 −βκµδ3 −β3κµδ3 + µε3

β2κ2

σ4 e1 −βκ2

σ2 e1 −β3κ2

σ2 e1

β2κ2e1 β2κ2e1

β4κ2e1 + e2




23



6.5 Ratio of the error variances λ = σ2
ε

σ2
δ

known

The method of moments estimator for the slope based on this assumption is

β̃ =
(syy − λsxx) +

√
(syy − λsxx)2 + 4λ(sxy)2

2sxy
.

The variance covariance matrix for µ̃, α̃, β̃, σ̃2 and σ̃2
δ is required.

A5 =
1

n




U βσ2
δ 0 0 0

µ2 |Σ|
σ4 + V −µ |Σ|

σ4
2µβ

(β2+λ)σ2 |Σ| 0

|Σ|
σ4 − 2β

(β2+λ)σ2 |Σ| 0

2σ4 + 4|Σ|
(β2+λ)

− 2σ2
δσ

2
ε

(β2+λ)

2σ4
δ




B5 =
1

n




0 0 0 µξ3 0

0 0 0 0

0 0 0

µξ4 − 3σ4 0

0




C5 =
1

n




0 µλβ
(β2+λ)σ2µδ3 − λβ

(β2+λ)σ2µδ3
λ

(β2+λ)
µδ3

β2

(β2+λ)
µδ3

−2 µβ
(β2+λ)σ2 e3

β
(β2+λ)σ2 e3 − e3

(β2+λ)
β

(β2+λ)
e3 − βµδ3

β2e2+λ2β2e1
(β2+λ)2σ4 − (βe2+λ2βe1)

(β2+λ)2σ2
βe2−λβ3e1
(β2+λ)2σ2

e2+λ2e1
(β2+λ)2 − (e2+λβ2e1)

(β2+λ)2

e2+β4e1
(β2+λ)2



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6.6 Both variances σ2
δ and σ2

ε known

The method of moments estimator for the slope based on this assumption is

β̃ = sgn(sxy)

√
syy − σ2

ε

sxx − σ2
δ

.

The variance covariance matrix for µ̃, α̃, β̃ and σ̃2 is required.

A7 =
1

n




U −βσ2
δ 0 0

0 0 0

|Σ|
σ4 +

(β2σ2
δ−σ2

ε)

2β2σ4 −βσ2
δ

σ2 (U + σ2)

µξ4 − 3σ4




B7 =
1

n




0 0 0 µξ3

0 0 0

0 0

µξ4 − 3σ4




C7 =
1

n




0 µβµδ3
2σ2 −βµδ3

2σ2 µδ3

−β2µ
σ2 µδ3 − µ

βσ2µε3
β2

2σ2µδ3 + µε3
2βσ2 −βµδ3

β2

4σ4 e1 + e3
β2σ4 − β

2σ2 e1

e1



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Chapter 7

Variances and Covariances for
Higher Moment Estimators

The methodology underlying the derivation of the asymptotic variances and covari-

ances for estimators based on higher moments is identical to that outlined previously.

However, the algebraic expressions for the variances and covariances of higher moment

based estimators are longer and more cumbersome than those for the restricted pa-

rameter space. As a result, the full variance covariance matrices for higher moment

estimators will not be reported here. However, the expressions needed to work out the

full variance covariance matrices for the slope estimator based on third moments will

be provided. These expressions can then be substituted into the shortcut formulae to

derive the full variance covariance matrices.

7.1 Estimator based on Third Moments

The estimator for the slope β based on the third order moments derived by Gillard

and Iles [9] is

β̃8 =
sxyy
sxxy

.

In order to use the shortcut equations outlined earlier, the quantities Cov[x̄, β̃8], Cov[ȳ, β̃8],

Cov[sxx, β̃8], Cov[sxy, β̃8] and Cov[syy, β̃8] are needed. Further, to obtain these quanti-

ties, the covariances between each of the first and second order moments (x̄, ȳ, sxx, sxy,

syy) and the third order moments that occur in β̃8 (sxxy, sxyy) must be obtained. Also,

the variances of these third order moments must be obtained, as well as the covariance
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between them.

Using the method illustrated in deriving V ar[sxx] and Cov[sxx, sxy], the required co-

variances between the second order and third order moments are:

V ar[sxxy] =
β2(µξ6 − µξ32) + 6β2µξ4σδ

2 + µξ4σε
2 + 4β2µξ3µδ3

n

+
β2σ2µδ4 + µδ4σε

2 + 6σ2σδ
2σε

2

n

V ar[sxyy] =
β4(µξ6 − µξ32) + 6β2µξ4σε

2 + β4µξ4σδ
2 + 4βµξ3µε3

n

+
σ2µε4 + σδ

2µε4 + 6β2σ2σδ
2σε

2

n

Cov[x̄, sxxy] =
β (µξ4 + 3σ2σδ

2)

n

Cov[x̄, sxyy] =
β2µξ4 + σδ

2σε
2 + β2σ2σδ

2 + σ2σε
2

n

Cov[ȳ, sxxy] =
β2µξ4 + σδ

2σε
2 + β2σ2σδ

2 + σ2σε
2

n

Cov[ȳ, sxyy] =
β (β2µξ4 + 3σ2σε

2)

n

Cov[sxx, sxxy] =
β (µξ5 − σ2µξ3) + 5βµξ3σδ

2 + 4βσ2µδ3
n

Cov[sxy, sxxy] =
β2 (µξ5 − σ2µξ3) + 3β2µξ3σδ

2 + σε
2 (µξ3 + µδ3) + β2σ2µδ3

n

Cov[syy, sxxy] =
β3 (µξ5 − σ2µξ3) + σ2µε3 + σδ

2µε3 + β3µξ3σδ
2 + 2βµξ3σε

2

n

Cov[sxx, sxyy] =
β2 (µξ5 − σ2µξ3) + 2β2µξ3σδ

2 + β2σ2µδ3 + µξ3σε
2 + µδ3σε

2

n

Cov[sxy, sxyy] =
β3 (µξ5 − σ2µξ3) + 3βµξ3σε

2 + σ2µε3 + σδ
2µε3 + β3µξ3σδ

2

n

Cov[syy, sxyy] =
β4 (µξ5 − σ2µξ3) + 5β2µξ3σε

2 + 4βσ2µε3
n

Cov[sxxy, sxyy] =
β3µξ6 − β3µξ3

2 + 3βµξ4σε
2 + 3β3µξ4σδ

2

n

+
µξ3µε3 + β3µξ3µδ3 + 9βσ2σδ

2σε
2 + µδ3µε3

n

By using the methodology outlined earlier, we can now obtain the variance of our slope

estimator β̃8, and the covariances of our slope estimator with the first and second order
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moments.

V ar[β̃8] =
β2µξ4σε

2 + β4µξ4σδ
2 + 2βµξ3µε3 + σ2µε4 + σδ

2µε4 − 6β2σ2σδ
2σε

2

β2µξ32n

+
2β4µξ3µδ3 + β4σ2µδ4 + β2µδ4σε

2 − 2βµδ3µε3
β2µ2

ξ3n

Cov[x̄, β̃8] =
σδ

2σε
2 − 2β2σ2σδ

2 + σ2σε
2

βµξ3n

Cov[ȳ, β̃8] =
2σ2σε

2 − σδ2σε
2 − β2σ2σδ

2

µξ3n

Cov[sxx, β̃8] =
−3β2µξ3σδ

2 − 3β2σ2µδ3 + µξ3σε
2 + µδ3σε

2

βµξ3n

Cov[sxy, β̃8] =
2βµξ3σε

2 + σ2µε3 + σδ
2µε3 − 2β3µξ3σδ

2 − βµδ3σε2 − β3σ2µδ3
βµξ3n

Cov[syy, β̃8] =
3βµξ3σε

2 + 3σ2µε3 − σδ2µε3 − β3µξ3σδ
2

µξ3n

We now have each of the components needed to use the shortcut formulae to obtain

the following variance covariance matrix for the parameters µ, α, β, σ2, σ2
δ and σ2

ε when

the estimator β̃8 is used.

7.2 Estimator based on Fourth Moments

The estimator for the slope β based on fourth order moments derived earlier is

β̃9 =

√
sxyyy − 3sxysyy
sxxxy − 3sxxsxy

In order to use the shortcut equations, the quantities Cov[x̄, β̃9], Cov[ȳ, β̃9], Cov[sxx, β̃9],

Cov[sxy, β̃9] and Cov[syy, β̃9] are needed. Further, to obtain these quantities, the co-

variances between each of the first and second order moments (x̄, ȳ, sxx, sxy, syy) and

the fourth order moments that occur in β̃9 (sxyyy, sxxxy) must be obtained. Also, the

variances of these fourth order moments must be obtained, as well as the covariance

between them. The formulae for these quantities are very lengthy and full details will

be given in Gillard [?]. However, there is a potential difficulty.

As can be seen from the shortcut formulae, a key component of the variance covariance

matrices is V ar[β̃]. For the estimator of the slope based on fourth moments, V ar[β̃]
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depends on the sixth moment of ξ. High order moments may be difficult to estimate

reliably, so the authors believe further work is needed to establish whether this formula

is of practical value. Again, full details will be given by Gillard [8].
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